Do you want to publish a course? Click here

Raw-to-End Name Entity Recognition in Social Media

170   0   0.0 ( 0 )
 Added by Liyuan Liu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Taking word sequences as the input, typical named entity recognition (NER) models neglect errors from pre-processing (e.g., tokenization). However, these errors can influence the model performance greatly, especially for noisy texts like tweets. Here, we introduce Neural-Char-CRF, a raw-to-end framework that is more robust to pre-processing errors. It takes raw character sequences as inputs and makes end-to-end predictions. Word embedding and contextualized representation models are further tailored to capture textual signals for each character instead of each word. Our model neither requires the conversion from character sequences to word sequences, nor assumes tokenizer can correctly detect all word boundaries. Moreover, we observe our model performance remains unchanged after replacing tokenization with string matching, which demonstrates its potential to be tokenization-free. Extensive experimental results on two public datasets demonstrate the superiority of our proposed method over the state of the art. The implementations and datasets are made available at: https://github.com/LiyuanLucasLiu/Raw-to-End.



rate research

Read More

Named Entity Recognition (NER) from social media posts is a challenging task. User generated content that forms the nature of social media, is noisy and contains grammatical and linguistic errors. This noisy content makes it much harder for tasks such as named entity recognition. We propose two novel deep learning approaches utilizing multimodal deep learning and Transformers. Both of our approaches use image features from short social media posts to provide better results on the NER task. On the first approach, we extract image features using InceptionV3 and use fusion to combine textual and image features. This presents more reliable name entity recognition when the images related to the entities are provided by the user. On the second approach, we use image features combined with text and feed it into a BERT like Transformer. The experimental results, namely, the precision, recall and F1 score metrics show the superiority of our work compared to other state-of-the-art NER solutions.
Named entity recognition (NER) is a critical step in modern search query understanding. In the domain of eCommerce, identifying the key entities, such as brand and product type, can help a search engine retrieve relevant products and therefore offer an engaging shopping experience. Recent research shows promising results on shared benchmark NER tasks using deep learning methods, but there are still unique challenges in the industry regarding domain knowledge, training data, and model production. This paper demonstrates an end-to-end solution to address these challenges. The core of our solution is a novel model training framework TripleLearn which iteratively learns from three separate training datasets, instead of one training set as is traditionally done. Using this approach, the best model lifts the F1 score from 69.5 to 93.3 on the holdout test data. In our offline experiments, TripleLearn improved the model performance compared to traditional training approaches which use a single set of training data. Moreover, in the online A/B test, we see significant improvements in user engagement and revenue conversion. The model has been live on homedepot.com for more than 9 months, boosting search
60 - Nanyun Peng , Mark Dredze 2016
Named entity recognition, and other information extraction tasks, frequently use linguistic features such as part of speech tags or chunkings. For languages where word boundaries are not readily identified in text, word segmentation is a key first step to generating features for an NER system. While using word boundary tags as features are helpful, the signals that aid in identifying these boundaries may provide richer information for an NER system. New state-of-the-art word segmentation systems use neural models to learn representations for predicting word boundaries. We show that these same representations, jointly trained with an NER system, yield significant improvements in NER for Chinese social media. In our experiments, jointly training NER and word segmentation with an LSTM-CRF model yields nearly 5% absolute improvement over previously published results.
Voice-controlled house-hold devices, like Amazon Echo or Google Home, face the problem of performing speech recognition of device-directed speech in the presence of interfering background speech, i.e., background noise and interfering speech from another person or media device in proximity need to be ignored. We propose two end-to-end models to tackle this problem with information extracted from the anchored segment. The anchored segment refers to the wake-up word part of an audio stream, which contains valuable speaker information that can be used to suppress interfering speech and background noise. The first method is called Multi-source Attention where the attention mechanism takes both the speaker information and decoder state into consideration. The second method directly learns a frame-level mask on top of the encoder output. We also explore a multi-task learning setup where we use the ground truth of the mask to guide the learner. Given that audio data with interfering speech is rare in our training data set, we also propose a way to synthesize noisy speech from clean speech to mitigate the mismatch between training and test data. Our proposed methods show up to 15% relative reduction in WER for Amazon Alexa live data with interfering background speech without significantly degrading on clean speech.
We evaluate named entity representations of BERT-based NLP models by investigating their robustness to replacements from the same typed class in the input. We highlight that on several tasks while such perturbations are natural, state of the art trained models are surprisingly brittle. The brittleness continues even with the recent entity-aware BERT models. We also try to discern the cause of this non-robustness, considering factors such as tokenization and frequency of occurrence. Then we provide a simple method that ensembles predictions from multiple replacements while jointly modeling the uncertainty of type annotations and label predictions. Experiments on three NLP tasks show that our method enhances robustness and increases accuracy on both natural and adversarial datasets.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا