Do you want to publish a course? Click here

A Catalog of Astrophysical Neutrino Candidates for IceCube

218   0   0.0 ( 0 )
 Added by Chujie Chen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Multi-messenger astrophysics will enable the discovery of new astrophysical neutrino sources and provide information about the mechanisms that drive these objects. We present a curated online catalog of astrophysical neutrino candidates. Whenever single high energy neutrino events, that are publicly available, get published multiple times from various analyses, the catalog records all these changes and highlights the best information. All studies by IceCube that produce astrophysical candidates will be included in our catalog. All information produced by these searches such as time, type, direction, neutrino energy and signalness will be contained in the catalog. The multi-messenger astrophysical community will be able to select neutrinos with certain characteristics, e.g. within a declination range, visualize data for the selected neutrinos, and finally download data in their preferred form to conduct further studies.



rate research

Read More

In multi-messenger astronomy, rapid investigation of interesting transients is imperative. As an observatory with a 4$pi$ steradian field of view and $sim$99% uptime, the IceCube Neutrino Observatory is a unique facility to follow up transients, and to provide valuable insight for other observatories and inform their observing decisions. Since 2016, IceCube has been using low-latency data to rapidly respond to interesting astrophysical events reported by the multi-messenger observational community. Here, we describe the pipeline used to perform these follow up analyses and provide a summary of the 58 analyses performed as of July 2020. We find no significant signal in the first 58 analyses performed. The pipeline has helped inform various electromagnetic observing strategies, and has constrained neutrino emission from potential hadronic cosmic accelerators.
DeepCore, as a densely instrumented sub-detector of IceCube, extends IceCubes energy reach down to about 10 GeV, enabling the search for astrophysical transient sources, e.g., choked gamma-ray bursts. While many other past and on-going studies focus on triggered time-dependent analyses, we aim to utilize a newly developed event selection and dataset for an untriggered all-sky time-dependent search for transients. In this work, all-flavor neutrinos are used, where neutrino types are determined based on the topology of the events. We extend the previous DeepCore transient half-sky search to an all-sky search and focus only on short timescale sources (with a duration of $10^2 sim 10^5$ seconds). All-sky sensitivities to transients in an energy range from 10 GeV to 300 GeV will be presented in this poster. We show that DeepCore can be reliably used for all-sky searches for short-lived astrophysical sources.
The Antarctic Impulsive Transient Antenna (ANITA) collaboration has reported a total of three neutrino candidates from the experiments first three flights. One of these was the lone candidate in a search for Askaryan radio emission, and the others can be interpreted as tau-neutrinos, with important caveats. Among a variety of explanations for these events, they may be produced by astrophysical transients with various characteristic timescales. We test the hypothesis that these events are astrophysical in origin by searching for IceCube counterparts. Using seven years of IceCube data from 2011 through 2018, we search for neutrino point sources using integrated, triggered, and untriggered approaches, and account for the substantial uncertainty in the directional reconstruction of the ANITA events. Due to its large livetime and effective area over many orders of magnitude in energy, IceCube is well suited to test the astrophysical origin of the ANITA events.
During the first three flights of the Antarctic Impulsive Transient Antenna (ANITA) experiment, the collaboration detected several neutrino candidates. Two of these candidate events were consistent with an ultra-high-energy up-going air shower and compatible with a tau neutrino interpretation. A third neutrino candidate event was detected in a search for Askaryan radiation in the Antarctic ice, although it is also consistent with the background expectation. The inferred emergence angle of the first two events is in tension with IceCube and ANITA limits on isotropic cosmogenic neutrino fluxes. Here, we test the hypothesis that these events are astrophysical in origin, possibly caused by a point source in the reconstructed direction. Given that any ultra-high-energy tau neutrino flux traversing the Earth should be accompanied by a secondary flux in the TeV-PeV range, we search for these secondary counterparts in seven years of IceCube data using three complementary approaches. In the absence of any significant detection, we set upper limits on the neutrino flux from potential point sources. We compare these limits to ANITAs sensitivity in the same direction and show that an astrophysical explanation of these anomalous events under standard model assumptions is severely constrained regardless of source spectrum.
We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between May 15th 2012 and April 30th 2013. While the search methods employed in this analysis are similar to those used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon neu- trinos from the Northern Sky (-5$^{circ}$ < {delta} < 90$^{circ}$ ) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events is used to search for any significant self-correlation in the dataset. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1$,$s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا