No Arabic abstract
begin{abstract} The frequencies of the elements in a data stream are an important statistical measure and the task of estimating them arises in many applications within data analysis and machine learning. Two of the most popular algorithms for this problem, Count-Min and Count-Sketch, are widely used in practice. In a recent work [Hsu et al., ICLR19], it was shown empirically that augmenting Count-Min and Count-Sketch with a machine learning algorithm leads to a significant reduction of the estimation error. The experiments were complemented with an analysis of the expected error incurred by Count-Min (both the standard and the augmented version) when the input frequencies follow a Zipfian distribution. Although the authors established that the learned version of Count-Min has lower estimation error than its standard counterpart, their analysis of the standard Count-Min algorithm was not tight. Moreover, they provided no similar analysis for Count-Sketch. In this paper we resolve these problems. First, we provide a simple tight analysis of the expected error incurred by Count-Min. Second, we provide the first error bounds for both the standard and the augmented version of Count-Sketch. These bounds are nearly tight and again demonstrate an improved performance of the learned version of Count-Sketch. In addition to demonstrating tight gaps between the aforementioned algorithms, we believe that our bounds for the standa
The noisy broadcast model was first studied in [Gallager, TranInf88] where an $n$-character input is distributed among $n$ processors, so that each processor receives one input bit. Computation proceeds in rounds, where in each round each processor broadcasts a single character, and each reception is corrupted independently at random with some probability $p$. [Gallager, TranInf88] gave an algorithm for all processors to learn the input in $O(loglog n)$ rounds with high probability. Later, a matching lower bound of $Omega(loglog n)$ was given in [Goyal, Kindler, Saks; SICOMP08]. We study a relaxed version of this model where each reception is erased and replaced with a `? independently with probability $p$. In this relaxed model, we break past the lower bound of [Goyal, Kindler, Saks; SICOMP08] and obtain an $O(log^* n)$-round algorithm for all processors to learn the input with high probability. We also show an $O(1)$-round algorithm for the same problem when the alphabet size is $Omega(mathrm{poly}(n))$.
Say that we are given samples from a distribution $psi$ over an $n$-dimensional space. We expect or desire $psi$ to behave like a product distribution (or a $k$-wise independent distribution over its marginals for small $k$). We propose the problem of enumerating/list-decoding all large subcubes where the distribution $psi$ deviates markedly from what we expect; we refer to such subcubes as skewed subcubes. Skewed subcubes are certificates of dependencies between small subsets of variables in $psi$. We motivate this problem by showing that it arises naturally in the context of algorithmic fairness and anomaly detection. In this work we focus on the special but important case where the space is the Boolean hypercube, and the expected marginals are uniform. We show that the obvious definition of skewed subcubes can lead to intractable list sizes, and propose a better definition of a minimal skewed subcube, which are subcubes whose skew cannot be attributed to a larger subcube that contains it. Our main technical contribution is a list-size bound for this definition and an algorithm to efficiently find all such subcubes. Both the bound and the algorithm rely on Fourier-analytic techniques, especially the powerful hypercontractive inequality. On the lower bounds side, we show that finding skewed subcubes is as hard as the sparse noisy parity problem, and hence our algorithms cannot be improved on substantially without a breakthrough on this problem which is believed to be intractable. Motivated by this, we study alternate models allowing query access to $psi$ where finding skewed subcubes might be easier.
Differentially private algorithms protect individuals in data analysis scenarios by ensuring that there is only a weak correlation between the existence of the user in the data and the result of the analysis. Dynamic graph algorithms maintain the solution to a problem (e.g., a matching) on an evolving input, i.e., a graph where nodes or edges are inserted or deleted over time. They output the value of the solution after each update operation, i.e., continuously. We study (event-level and user-level) differentially private algorithms for graph problems under continual observation, i.e., differentially private dynamic graph algorithms. We present event-level private algorithms for partially dynamic counting-based problems such as triangle count that improve the additive error by a polynomial factor (in the length $T$ of the update sequence) on the state of the art, resulting in the first algorithms with additive error polylogarithmic in $T$. We also give $varepsilon$-differentially private and partially dynamic algorithms for minimum spanning tree, minimum cut, densest subgraph, and maximum matching. The additive error of our improved MST algorithm is $O(W log^{3/2}T / varepsilon)$, where $W$ is the maximum weight of any edge, which, as we show, is tight up to a $(sqrt{log T} / varepsilon)$-factor. For the other problems, we present a partially-dynamic algorithm with multiplicative error $(1+beta)$ for any constant $beta > 0$ and additive error $O(W log(nW) log(T) / (varepsilon beta) )$. Finally, we show that the additive error for a broad class of dynamic graph algorithms with user-level privacy must be linear in the value of the output solutions range.
Estimation-of-distribution algorithms (EDAs) are randomized search heuristics that create a probabilistic model of the solution space, which is updated iteratively, based on the quality of the solutions sampled according to the model. As previous works show, this iteration-based perspective can lead to erratic updates of the model, in particular, to bit-frequencies approaching a random boundary value. In order to overcome this problem, we propose a new EDA based on the classic compact genetic algorithm (cGA) that takes into account a longer history of samples and updates its model only with respect to information which it classifies as statistically significant. We prove that this significance-based compact genetic algorithm (sig-cGA) optimizes the commonly regarded benchmark functions OneMax, LeadingOnes, and BinVal all in quasilinear time, a result shown for no other EDA or evolutionary algorithm so far. For the recently proposed scGA -- an EDA that tries to prevent erratic model updates by imposing a bias to the uniformly distributed model -- we prove that it optimizes OneMax only in a time exponential in its hypothetical population size. Similarly, we show that the convex search algorithm cannot optimize OneMax in polynomial time.
Estimation-of-distribution algorithms (EDAs) are general metaheuristics used in optimization that represent a more recent alternative to classical approaches like evolutionary algorithms. In a nutshell, EDAs typically do not directly evolve populations of search points but build probabilistic models of promising solutions by repeatedly sampling and selecting points from the underlying search space. Recently, there has been made significant progress in the theoretical understanding of EDAs. This article provides an up-to-date overview of the most commonly analyzed EDAs and the most recent theoretical results in this area. In particular, emphasis is put on the runtime analysis of simple univariate EDAs, including a description of typical benchmark functions and tools for the analysis. Along the way, open problems and directions for future research are described.