Do you want to publish a course? Click here

The category of weight modules for symplectic oscillator Lie algebras

120   0   0.0 ( 0 )
 Added by Kaiming Zhao
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The rank $n$ symplectic oscillator Lie algebra $mathfrak{g}_n$ is the semidirect product of the symplectic Lie algebra $mathfrak{sp}_{2n}$ and the Heisenberg Lie algebra $H_n$. In this paper, we study weight modules with finite dimensional weight spaces over $mathfrak{g}_n$. When $dot z eq 0$, it is shown that there is an equivalence between the full subcategory $mathcal{O}_{mathfrak{g}_n}[dot z]$ of the BGG category $mathcal{O}_{mathfrak{g}_n}$ for $mathfrak{g}_n$ and the BGG category $mathcal{O}_{mathfrak{sp}_{2n}}$ for $mathfrak{sp}_{2n}$. Then using the technique of localization and the structure of generalized highest weight modules, we also give the classification of simple weight modules over $mathfrak{g}_n$ with finite-dimensional weight spaces.



rate research

Read More

The symplectic structures on $3$-Lie algebras and metric symplectic $3$-Lie algebras are studied. For arbitrary $3$-Lie algebra $L$, infinite many metric symplectic $3$-Lie algebras are constructed. It is proved that a metric $3$-Lie algebra $(A, B)$ is a metric symplectic $3$-Lie algebra if and only if there exists an invertible derivation $D$ such that $Din Der_B(A)$, and is also proved that every metric symplectic $3$-Lie algebra $(tilde{A}, tilde{B}, tilde{omega})$ is a $T^*_{theta}$-extension of a metric symplectic $3$-Lie algebra $(A, B, omega)$. Finally, we construct a metric symplectic double extension of a metric symplectic $3$-Lie algebra by means of a special derivation.
141 - Genqiang Liu , Yang Li , Keke Wang 2020
In this paper, we study weight representations over the Schr{o}dinger Lie algebra $mathfrak{s}_n$ for any positive integer $n$. It turns out that the algebra $mathfrak{s}_n$ can be realized by polynomial differential operators. Using this realization, we give a complete classification of irreducible weight $mathfrak{s}_n$-modules with finite dimensional weight spaces for any $n$. All such modules can be clearly characterized by the tensor product of $mathfrak{so}_n$-modules, $mathfrak{sl}_2$-modules and modules over the Weyl algebra.
In 2006, Gao and Zeng cite{GZ} gave the free field realizations of highest weight modules over a class of extended affine Lie algebras. In the present paper, applying the technique of localization to those free field realizations, we construct a class of new weight modules over the extended affine Lie algebras. We give necessary and sufficient conditions for these modules to be irreducible. In this way, we construct free field realizations for a class of simple weight modules with infinite weight multiplicities over the extended affine Lie algebras.
143 - Kori Tosiaki 2020
We give a definition of quaternion Lie algebra and of the quaternification of a complex Lie algebra. By our definition gl(n,H), sl(n,H), so*(2n) ans sp(n) are quaternifications of gl(n,C), sl(n,C), so(n,C) and u(n) respectively. Then we shall prove that a simple Lie algebra admits the quaternification. For the proof we follow the well known argument due to Harich-Chandra, Chevalley and Serre to construct the simple Lie algebra from its corresponding root system. The root space decomposition of this quaternion Lie algebra will be given. Each root sapce of a fundamental root is complex 2-dimensional.
We examine in detail the Jacobi-Trudi characters over the ortho-symplectic Lie superalgebras spo(2|2m+1) and spo(2n|3). We furthermore relate them to Serganovas notion of Euler characters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا