No Arabic abstract
We describe an adaptive version of a method for generating valid naturally curved quadrilateral meshes. The method uses a guiding field, derived from the concept of a cross field, to create block decompositions of multiply connected two dimensional domains. The a priori curved quadrilateral blocks can be further split into a finer high-order mesh as needed. The guiding field is computed by a Laplace equation solver using a continuous Galerkin or discontinuous Galerkin spectral element formulation. This operation is aided by using $p$-adaptation to achieve faster convergence of the solution with respect to the computational cost. From the guiding field, irregular nodes and separatrices can be accurately located. A first version of the code is implemented in the open source spectral element framework Nektar++ and its dedicated high order mesh generation platform NekMesh.
We describe a high order technique to generate quadrilateral decompositions and meshes for complex two dimensional domains using spectral elements in a field guided procedure. Inspired by cross field methods, we never actually compute crosses. Instead, we compute a high order accurate guiding field using a continuous Galerkin (CG) or discontinuous Galerkin (DG) spectral element method to solve a Laplace equation for each of the field variables using the open source code Nektar++. The spectral method provides spectral convergence and sub-element resolution of the fields. The DG approximation allows meshing of corners that are not multiples of $pi/2$ in a discretization consistent manner, when needed. The high order field can then be exploited to accurately find irregular nodes, and can be accurately integrated using a high order separatrix integration method to avoid features like limit cycles. The result is a mesh with naturally curved quadrilateral elements that do not need to be curved a posteriori to eliminate invalid elements. The mesh generation procedure is implemented in the open source mesh generation program NekMesh.
This work concerns with the following problem. Given a two-dimensional domain whose boundary is a closed polygonal line with internal boundaries defined also by polygonal lines, it is required to generate a grid consisting only of quadrilaterals with the following features: (1) conformal, that is, to be a tessellation of the two-dimensional domain such that the intersection of any two quadrilaterals is a vertex, an edge or empty (never a portion of one edge), (2) structured, which means that only four quadrilaterals meet at a single node and the quadrilaterals that make up the grid need not to be rectangular, and (3) the mesh generated must be supported on the internal boundaries. The fundamental technique for generating such grids, is the deformation of an initial Cartesian grid and the subsequent alignment with the internal boundaries. This is accomplished through the numerical solution of an elliptic partial differential equation based on finite differences. The large nonlinear system of equation arising from this formulation is solved through spectral gradient techniques. Examples of typical structures corresponding to a two-dimensional, areal hydrocarbon reservoir are presented.
In this article, a new unified duality theory is developed for Petrov-Galerkin finite element methods. This novel theory is then used to motivate goal-oriented adaptive mesh refinement strategies for use with discontinuous Petrov-Galerkin (DPG) methods. The focus of this article is mainly on broken ultraweak variational formulations of stationary boundary value problems, however, many of the ideas presented within are general enough that they be extended to any such well-posed variational formulation. The proposed goal-oriented adaptive mesh refinement procedures require the construction of refinement indicators for both a primal problem and a dual problem. In the DPG context, the primal problem is simply the system of linear equations coming from a standard DPG method and the dual problem is a similar system of equations, coming from a new method which is dual to DPG. This new method has the same coefficient matrix as the associated DPG method but has a different load. We refer to this new finite element method as a DPG* method. A thorough analysis of DPG* methods, as stand-alone finite element methods, is not given here but will be provided in subsequent articles. For DPG methods, the current theory of a posteriori error estimation is reviewed and the reliability estimate in [13, Theorem 2.1] is improved on. For DPG* methods, three different classes of refinement indicators are derived and several contributions are made towards rigorous a posteriori error estimation. At the closure of the article, results of numerical experiments with Poissons boundary value problem in a three-dimensional domain are provided. These results clearly demonstrate the utility of the goal-oriented adaptive mesh refinement strategies for quantities of interest with either interior or boundary terms.
A numerical scheme is presented for approximating fractional order Poisson problems in two and three dimensions. The scheme is based on reformulating the original problem posed over $Omega$ on the extruded domain $mathcal{C}=Omegatimes[0,infty)$ following Caffarelli and Silvestre (2007). The resulting degenerate elliptic integer order PDE is then approximated using a hybrid FEM-spectral scheme. Finite elements are used in the direction parallel to the problem domain $Omega$, and an appropriate spectral method is used in the extruded direction. The spectral part of the scheme requires that we approximate the true eigenvalues of the integer order Laplacian over $Omega$. We derive an a priori error estimate which takes account of the error arising from using an approximation in place of the true eigenvalues. We further present a strategy for choosing approximations of the eigenvalues based on Weyls law and finite element discretizations of the eigenvalue problem. The system of linear algebraic equations arising from the hybrid FEM-spectral scheme is decomposed into blocks which can be solved effectively using standard iterative solvers such as multigrid and conjugate gradient. Numerical examples in two and three dimensions show that the approach is quasi-optimal in terms of complexity.
This work discovers the equivalence relation between quadrilateral meshes and meromorphic quartic. Each quad-mesh induces a conformal structure of the surface, and a meromorphic differential, where the configuration of singular vertices correspond to the configurations the poles and zeros (divisor) of the meroromorphic differential. Due to Riemann surface theory, the configuration of singularities of a quad-mesh satisfies the Abel-Jacobi condition. Inversely, if a satisfies the Abel-Jacobi condition, then there exists a meromorphic quartic differential whose equals to the given one. Furthermore, if the meromorphic quadric differential is with finite, then it also induces a a quad-mesh, the poles and zeros of the meromorphic differential to the singular vertices of the quad-mesh. Besides the theoretic proofs, the computational algorithm for verification of Abel-Jacobi condition is explained in details. Furthermore, constructive algorithm of meromorphic quartic differential on zero surfaces is proposed, which is based on the global algebraic representation of meromorphic. Our experimental results demonstrate the efficiency and efficacy of the algorithm. This opens up a direction for quad-mesh generation using algebraic geometric approach.