Do you want to publish a course? Click here

A High Resolution PDE Approach to Quadrilateral Mesh Generation

73   0   0.0 ( 0 )
 Added by Julian Marcon
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We describe a high order technique to generate quadrilateral decompositions and meshes for complex two dimensional domains using spectral elements in a field guided procedure. Inspired by cross field methods, we never actually compute crosses. Instead, we compute a high order accurate guiding field using a continuous Galerkin (CG) or discontinuous Galerkin (DG) spectral element method to solve a Laplace equation for each of the field variables using the open source code Nektar++. The spectral method provides spectral convergence and sub-element resolution of the fields. The DG approximation allows meshing of corners that are not multiples of $pi/2$ in a discretization consistent manner, when needed. The high order field can then be exploited to accurately find irregular nodes, and can be accurately integrated using a high order separatrix integration method to avoid features like limit cycles. The result is a mesh with naturally curved quadrilateral elements that do not need to be curved a posteriori to eliminate invalid elements. The mesh generation procedure is implemented in the open source mesh generation program NekMesh.



rate research

Read More

We describe an adaptive version of a method for generating valid naturally curved quadrilateral meshes. The method uses a guiding field, derived from the concept of a cross field, to create block decompositions of multiply connected two dimensional domains. The a priori curved quadrilateral blocks can be further split into a finer high-order mesh as needed. The guiding field is computed by a Laplace equation solver using a continuous Galerkin or discontinuous Galerkin spectral element formulation. This operation is aided by using $p$-adaptation to achieve faster convergence of the solution with respect to the computational cost. From the guiding field, irregular nodes and separatrices can be accurately located. A first version of the code is implemented in the open source spectral element framework Nektar++ and its dedicated high order mesh generation platform NekMesh.
Constructing fast numerical solvers for partial differential equations (PDEs) is crucial for many scientific disciplines. A leading technique for solving large-scale PDEs is using multigrid methods. At the core of a multigrid solver is the prolongation matrix, which relates between different scales of the problem. This matrix is strongly problem-dependent, and its optimal construction is critical to the efficiency of the solver. In practice, however, devising multigrid algorithms for new problems often poses formidable challenges. In this paper we propose a framework for learning multigrid solvers. Our method learns a (single) mapping from a family of parameterized PDEs to prolongation operators. We train a neural network once for the entire class of PDEs, using an efficient and unsupervised loss function. Experiments on a broad class of 2D diffusion problems demonstrate improved convergence rates compared to the widely used Black-Box multigrid scheme, suggesting that our method successfully learned rules for constructing prolongation matrices.
We present a method for the automatic assembly of apictorial jigsaw puzzles. This method relies on integral area invariants for shape matching and an optimization process to aggregate shape matches into a final puzzle assembly. Assumptions about individual piece shape or arrangement are not necessary. We illustrate our method by solving example puzzles of various shapes and sizes.
This work discovers the equivalence relation between quadrilateral meshes and meromorphic quartic. Each quad-mesh induces a conformal structure of the surface, and a meromorphic differential, where the configuration of singular vertices correspond to the configurations the poles and zeros (divisor) of the meroromorphic differential. Due to Riemann surface theory, the configuration of singularities of a quad-mesh satisfies the Abel-Jacobi condition. Inversely, if a satisfies the Abel-Jacobi condition, then there exists a meromorphic quartic differential whose equals to the given one. Furthermore, if the meromorphic quadric differential is with finite, then it also induces a a quad-mesh, the poles and zeros of the meromorphic differential to the singular vertices of the quad-mesh. Besides the theoretic proofs, the computational algorithm for verification of Abel-Jacobi condition is explained in details. Furthermore, constructive algorithm of meromorphic quartic differential on zero surfaces is proposed, which is based on the global algebraic representation of meromorphic. Our experimental results demonstrate the efficiency and efficacy of the algorithm. This opens up a direction for quad-mesh generation using algebraic geometric approach.
Despite decades of research in this area, mesh adaptation capabilities are still rarely found in numerical simulation software. We postulate that the primary reason for this is lack of usability. Integrating mesh adaptation into existing software is difficult as non-trivial operators, such as error metrics and interpolation operators, are required, and integrating available adaptive remeshers is not straightforward. Our approach presented here is to first integrate Pragmatic, an anisotropic mesh adaptation library, into DMPlex, a PETSc object that manages unstructured meshes and their interactions with PETScs solvers and I/O routines. As PETSc is already widely used, this will make anisotropic mesh adaptation available to a much larger community. As a demonstration of this we describe the integration of anisotropic mesh adaptation into Firedrake, an automated Finite Element based system for the portable solution of partial differential equations which already uses PETSc solvers and I/O via DMPlex. We present a proof of concept of this integration with a three-dimensional advection test case.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا