Do you want to publish a course? Click here

LIP: Local Importance-based Pooling

121   0   0.0 ( 0 )
 Added by Ziteng Gao
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Spatial downsampling layers are favored in convolutional neural networks (CNNs) to downscale feature maps for larger receptive fields and less memory consumption. However, for discriminative tasks, there is a possibility that these layers lose the discriminative details due to improper pooling strategies, which could hinder the learning process and eventually result in suboptimal models. In this paper, we present a unified framework over the existing downsampling layers (e.g., average pooling, max pooling, and strided convolution) from a local importance view. In this framework, we analyze the issues of these widely-used pooling layers and figure out the criteria for designing an effective downsampling layer. According to this analysis, we propose a conceptually simple, general, and effective pooling layer based on local importance modeling, termed as {em Local Importance-based Pooling} (LIP). LIP can automatically enhance discriminative features during the downsampling procedure by learning adaptive importance weights based on inputs. Experiment results show that LIP consistently yields notable gains with different depths and different architectures on ImageNet classification. In the challenging MS COCO dataset, detectors with our LIP-ResNets as backbones obtain a consistent improvement ($ge 1.4%$) over the vanilla ResNets, and especially achieve the current state-of-the-art performance in detecting small objects under the single-scale testing scheme.



rate research

Read More

Detecting complex events in a large video collection crawled from video websites is a challenging task. When applying directly good image-based feature representation, e.g., HOG, SIFT, to videos, we have to face the problem of how to pool multiple frame feature representations into one feature representation. In this paper, we propose a novel learning-based frame pooling method. We formulate the pooling weight learning as an optimization problem and thus our method can automatically learn the best pooling weight configuration for each specific event category. Experimental results conducted on TRECVID MED 2011 reveal that our method outperforms the commonly used average pooling and max pooling strategies on both high-level and low-level 2D image features.
Pooling is a simple but essential layer in modern deep CNN architectures for feature aggregation and extraction. Typical CNN design focuses on the conv layers and activation functions, while leaving the pooling layers with fewer options. We introduce the Learning Discrete Wavelet Pooling (LDW-Pooling) that can be applied universally to replace standard pooling operations to better extract features with improved accuracy and efficiency. Motivated from the wavelet theory, we adopt the low-pass (L) and high-pass (H) filters horizontally and vertically for pooling on a 2D feature map. Feature signals are decomposed into four (LL, LH, HL, HH) subbands to retain features better and avoid information dropping. The wavelet transform ensures features after pooling can be fully preserved and recovered. We next adopt an energy-based attention learning to fine-select crucial and representative features. LDW-Pooling is effective and efficient when compared with other state-of-the-art pooling techniques such as WaveletPooling and LiftPooling. Extensive experimental validation shows that LDW-Pooling can be applied to a wide range of standard CNN architectures and consistently outperform standard (max, mean, mixed, and stochastic) pooling operations.
Cross-modality generation is an emerging topic that aims to synthesize data in one modality based on information in a different modality. In this paper, we consider a task of such: given an arbitrary audio speech and one lip image of arbitrary target identity, generate synthesized lip movements of the target identity saying the speech. To perform well in this task, it inevitably requires a model to not only consider the retention of target identity, photo-realistic of synthesized images, consistency and smoothness of lip images in a sequence, but more importantly, learn the correlations between audio speech and lip movements. To solve the collective problems, we explore the best modeling of the audio-visual correlations in building and training a lip-movement generator network. Specifically, we devise a method to fuse audio and image embeddings to generate multiple lip images at once and propose a novel correlation loss to synchronize lip changes and speech changes. Our final model utilizes a combination of four losses for a comprehensive consideration in generating lip movements; it is trained in an end-to-end fashion and is robust to lip shapes, view angles and different facial characteristics. Thoughtful experiments on three datasets ranging from lab-recorded to lips in-the-wild show that our model significantly outperforms other state-of-the-art methods extended to this task.
State-of-the-art patch-based image representations involve a pooling operation that aggregates statistics computed from local descriptors. Standard pooling operations include sum- and max-pooling. Sum-pooling lacks discriminability because the resulting representation is strongly influenced by frequent yet often uninformative descriptors, but only weakly influenced by rare yet potentially highly-informative ones. Max-pooling equalizes the influence of frequent and rare descriptors but is only applicable to representations that rely on count statistics, such as the bag-of-visual-words (BOV) and its soft- and sparse-coding extensions. We propose a novel pooling mechanism that achieves the same effect as max-pooling but is applicable beyond the BOV and especially to the state-of-the-art Fisher Vector -- hence the name Generalized Max Pooling (GMP). It involves equalizing the similarity between each patch and the pooled representation, which is shown to be equivalent to re-weighting the per-patch statistics. We show on five public image classification benchmarks that the proposed GMP can lead to significant performance gains with respect to heuristic alternatives.
129 - Chenhao Wang 2019
Lip-reading aims to recognize speech content from videos via visual analysis of speakers lip movements. This is a challenging task due to the existence of homophemes-words which involve identical or highly similar lip movements, as well as diverse lip appearances and motion patterns among the speakers. To address these challenges, we propose a novel lip-reading model which captures not only the nuance between words but also styles of different speakers, by a multi-grained spatio-temporal modeling of the speaking process. Specifically, we first extract both frame-level fine-grained features and short-term medium-grained features by the visual front-end, which are then combined to obtain discriminative representations for words with similar phonemes. Next, a bidirectional ConvLSTM augmented with temporal attention aggregates spatio-temporal information in the entire input sequence, which is expected to be able to capture the coarse-gained patterns of each word and robust to various conditions in speaker identity, lighting conditions, and so on. By making full use of the information from different levels in a unified framework, the model is not only able to distinguish words with similar pronunciations, but also becomes robust to appearance changes. We evaluate our method on two challenging word-level lip-reading benchmarks and show the effectiveness of the proposed method, which also demonstrate the above claims.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا