No Arabic abstract
Strong atmospheric escape has been detected in several close-in exoplanets. As these planets consist mostly of hydrogen, observations in hydrogen lines, such as Ly-alpha and H-alpha, are powerful diagnostics of escape. Here, we simulate the evolution of atmospheric escape of close-in giant planets and calculate their associated Ly-alpha and H-alpha transits. We use a one-dimensional hydrodynamic escape model to compute physical properties of the atmosphere and a ray-tracing technique to simulate spectroscopic transits. We consider giant (0.3 and 1M_jup) planets orbiting a solar-like star at 0.045au, evolving from 10 to 5000 Myr. We find that younger giants show higher rates of escape, owing to a favourable combination of higher irradiation fluxes and weaker gravities. Less massive planets show higher escape rates (1e10 -- 1e13 g/s) than those more massive (1e9 -- 1e12 g/s) over their evolution. We estimate that the 1-M_jup planet would lose at most 1% of its initial mass due to escape, while the 0.3-M_jup planet, could lose up to 20%. This supports the idea that the Neptunian desert has been formed due to significant mass loss in low-gravity planets. At younger ages, we find that the mid-transit Ly-alpha line is saturated at line centre, while H-alpha exhibits transit depths of at most 3 -- 4% in excess of their geometric transit. While at older ages, Ly-alpha absorption is still significant (and possibly saturated for the lower mass planet), the H-alpha absorption nearly disappears. This is because the extended atmosphere of neutral hydrogen becomes predominantly in the ground state after ~1.2 Gyr.
We use 3D hydrodynamics simulations followed by synthetic line profile calculations to examine the effect increasing the strength of the stellar wind has on observed Ly-$alpha$ transits of a Hot Jupiter (HJ) and a Warm Neptune (WN). We find that increasing the stellar wind mass-loss rate from 0 (no wind) to 100 times the solar mass-loss rate value causes reduced atmospheric escape in both planets (a reduction of 65% and 40% for the HJ and WN, respectively, compared to the no wind case). For weaker stellar winds (lower ram pressure), the reduction in planetary escape rate is very small. However, as the stellar wind becomes stronger, the interaction happens deeper in the planetary atmosphere and, once this interaction occurs below the sonic surface of the planetary outflow, further reduction in evaporation rates is seen. We classify these regimes in terms of the geometry of the planetary sonic surface. Closed refers to scenarios where the sonic surface is undisturbed, while open refers to those where the surface is disrupted. We find that the change in stellar wind strength affects the Ly-$alpha$ transit in a non-linear way. Although little change is seen in planetary escape rates ($simeq 5.5times 10^{11}$g/s) in the closed to partially open regimes, the Ly-$alpha$ absorption (sum of the blue [-300, -40 km/s] & red [40, 300 km/s] wings) changes from 21% to 6% as the stellar wind mass-loss rate is increased in the HJ set of simulations. For the WN simulations, escape rates of $simeq 6.5times 10^{10}$g/s can cause transit absorptions that vary from 8.8% to 3.7%, depending on the stellar wind strength. We conclude that the same atmospheric escape rate can produce a range of absorptions depending on the stellar wind and that neglecting this in the interpretation of Ly-$alpha$ transits can lead to underestimation of planetary escape rates.
Using a global 3D, fully self-consistent, multi-fluid hydrodynamic model, we simulate the escaping upper atmosphere of the warm Neptune GJ436b, driven by the stellar XUV radiation impact and gravitational forces and interacting with the stellar wind. Under the typical parameters of XUV flux and stellar wind plasma expected for GJ436, we calculate in-transit absorption in Ly{alpha} and find that it is produced mostly by Energetic Neutral Atoms outside of the planetary Roche lobe, due to the resonant thermal line broadening. At the same time, the influence of radiation pressure has been shown to be insignificant. The modelled absorption is in good agreement with the observations and reveals such features as strong asymmetry between blue and red wings of the absorbed Ly{alpha} line profile, deep transit depth in the high velocity blue part of the line reaching more than 70%, and the timing of early ingress. On the other hand, the model produces significantly deeper and longer egress than in observations, indicating that there might be other processes and factors, still not accounted, that affect the interaction between the planetary escaping material and the stellar wind. At the same time, it is possible that the observational data, collected in different measurement campaigns, are affected by strong variations of the stellar wind parameters between the visits, and therefore, they cannot be reproduced altogether with the single set of model parameters.
The GJ 436 planetary system is an extraordinary system. The Neptune-size planet that orbits the M3 dwarf revealed in the Ly$alpha$ line an extended neutral hydrogen atmosphere. This material fills a comet-like tail that obscures the stellar disc for more than 10 hours after the planetary transit. Here, we carry out a series of 3D radiation hydrodynamic simulations to model the interaction of the stellar wind with the escaping planetary atmosphere. With these models, we seek to reproduce the $sim56%$ absorption found in Ly$alpha$ transits, simultaneously with the lack of absorption in H$alpha$ transit. Varying the stellar wind strength and the EUV stellar luminosity, we search for a set of parameters that best fit the observational data. Based on Ly$alpha$ observations, we found a stellar wind velocity at the position of the planet to be around [250-460] km s$^{-1}$ with a temperature of $[3-4]times10^5$ K. The stellar and planetary mass loss rates are found to be $2times 10^{-15}$ M$_odot$ yr$^{-1}$ and $sim[6-10]times10^9$ g s$^{-1}$, respectively, for a stellar EUV luminosity of $[0.8-1.6]times10^{27}$ erg s$^{-1}$. For the parameters explored in our simulations, none of our models present any significant absorption in the H$alpha$ line in agreement with the observations.
The interaction between the magnetic fields of late-type stars and their close-by planets may produce stellar flares as observed in active binary systems. However, in spite of several claims, conclusive evidence is still lacking. We estimate the magnetic energy available in the interaction using analytical models to provide an upper bound to the expected flare energy. We investigate three different mechanisms leading to magnetic energy release. The first two can release an energy up to $(0.2-1.2) B^{2}_{0} R^{3}/mu$, where $B_{0}$ is the surface field of the star, $R$ its radius, and $mu$ the magnetic permeability of the plasma. They operate in young active stars whose coronae have closed magnetic field lines up to the distance of their close-by planets that can trigger the energy release. The third mechanism operates in weakly or moderately active stars having a coronal field with predominantly open field lines at the distance of their planets. The released energy is of the order of $(0.002-0.1) B^{2}_{0} R^{3}/mu$ and depends on the ratio of the planetary to the stellar fields, thus allowing an indirect measurement of the former when the latter is known. We compute the released energy for different separations of the planet and different stellar parameters finding the conditions for the operation of the proposed mechanisms. An application to eight selected systems is presented. The computed energies and dissipation timescales are in agreement with flare observations in the eccentric system HD 17156 and in the circular systems HD 189733 and HD 179949. This kind of star-planet interaction can be unambiguously identified by the higher flaring frequency expected close to periastron in eccentric systems.
GJ 1132b, which orbits an M dwarf, is one of the few known Earth-sized planets, and at 12 pc away it is one of the closest known transiting planets. Receiving roughly 19x Earths insolation, this planet is too hot to be habitable but can inform us about the volatile content of rocky planet atmospheres around cool stars. Using Hubble STIS spectra, we search for a transit in the Lyman-alpha line of neutral hydrogen (Ly-alpha). If we were to observe a deep Ly-alpha absorption signature, that would indicate the presence of a neutral hydrogen envelope flowing from GJ 1132b. On the other hand, ruling out deep absorption from neutral hydrogen may indicate that this planet does not have a detectable amount of hydrogen loss, is not losing hydrogen, or lost hydrogen and other volatiles early in the stars life. We do not detect a transit and determine a 2-sigma upper limit on the effective envelope radius of 0.36 R* in the red wing of the Ly-alpha line, which is the only portion of the spectrum we detect after absorption by the ISM. We analyze the Ly-alpha spectrum and stellar variability of GJ1132, which is a slowly-rotating 0.18 solar mass M dwarf with previously uncharacterized UV activity. Our data show stellar variabilities of 5-22%, which is consistent with the M dwarf UV variabilities of up to 41% found by citet{Loyd2014}. Understanding the role that UV variability plays in planetary atmospheres is crucial to assess atmospheric evolution and the habitability of cooler rocky exoplanets.