Do you want to publish a course? Click here

Multiple Superconducting Transitions in {alpha}-Sn Films Grown by Molecular Beam Epitaxy

374   0   0.0 ( 0 )
 Added by Yuanfeng Ding
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gray tin, also known as {alpha}-Sn, has been attracting research interest recent years due to its topological nontrivial properties predicted theoretically. The Dirac linear band dispersion has been proved experimentally by angle resolved photoemission spectroscopy. We have grown a series of {alpha}-Sn thin film samples in two types with different substrates and thicknesses by molecular beam epitaxy. To explore the possible exotic physical properties related to the topological band structures, we have measured the electrical transport properties of our {alpha}-Sn thin film samples and observed multiple superconducting transitions. We have identified the transitions above 4.5 K, besides the transition maybe related to the b{eta} phase around 3.7 K. The changes of the superconducting properties over time reflect the aging effects in our samples. We have also confirmed the strain effects on the superconducting transitions through altering the relative thickness of our samples.



rate research

Read More

We report a systematic study on the growth conditions of Sn$_{1-x}$In$_x$Te thin films by molecular beam epitaxy for maximization of superconducting transition temperature $T_mathrm{c}$. Careful tuning of the flux ratios of Sn, In, and Te enables us to find an optimum condition for substituting rich In content ($x$ = 0.66) into Sn site in a single phase of Sn$_{1-x}$In$_x$Te beyond the bulk solubility limit at ambient pressure ($x$ = 0.5). $T_mathrm{c}$ shows a dome-shaped dependence on In content $x$ with the highest $T_mathrm{c}$ = 4.20 K at $x$ = 0.55, being consistent to that reported for bulk crystals. The well-regulated Sn$_{1-x}$In$_x$Te films can be a useful platform to study possible topological superconductivity by integrating them into the state-of-the-art junctions and/or proximity-coupled devices.
155 - M. Uchida , M. Ide , H. Watanabe 2019
We report growth of superconducting Sr2RuO4 films by oxide molecular beam epitaxy (MBE). Careful tuning of the Ru flux with an electron beam evaporator enables us to optimize growth conditions including the Ru/Sr flux ratio and also to investigate stoichiometry effects on the structural and transport properties. The highest onset transition temperature of about 1.1 K is observed for films grown in a slightly Ru-rich flux condition in order to suppress Ru deficiency. The realization of superconducting Sr2RuO4 films via oxide MBE opens up a new route to study the unconventional superconductivity of this material.
Superconducting thin films of magnesium diboride (MgB$_2$) were prepared on MgO (001) substrate by a molecular beam epitaxy (MBE) method with the co-evaporation conditions of low deposition rate in ultra-high vacuum. The structural and physical properties of the films were studied by RHEED, XRD, XPS, resistivity and magnetization measurements.All films demonstrated superconductivity without use of any post-annealing process.The highest {it T}$_{c,onset}$ determined by resistivity measurement was about 33K in the present samples.Anisotropic superconducting properties were evaluated by the resistivity and magnetic measurements.We will discuss the anisotropy of superconductivity for as-grown MgB$_2$ thin films.
Much of what is known about high-temperature cuprate superconductors stems from studies based on two surface analytical tools, angle-resolved photoemission spectroscopy (ARPES) and spectroscopic imaging scanning tunneling microscopy (SI-STM). A question of general interest is whether and when the surface properties probed by ARPES and SI-STM are representative of the intrinsic properties of bulk materials. We find this question is prominent in thin films of a rarely studied cuprate DBCO. We synthesize DBCO films by oxide molecular beam epitaxy and study them by in situ ARPES and SI-STM. Both ARPES and SI-STM show that the surface DBCO layer is different from the bulk of the film. It is heavily underdoped, while the doping level in the bulk is close to optimal doping evidenced by bulk-sensitive mutual inductance measurements. ARPES shows the typical electronic structure of a heavily underdoped CuO2 plane and two sets of one-dimensional bands originating from the CuO chains with one of them gapped. SI-STM reveals two different energy scales in the local density of states, with one corresponding to the superconductivity and the other one to the pseudogap. While the pseudogap shows large variations over the length scale of a few nanometers, the superconducting gap is very homogeneous. This indicates that the pseudogap and superconductivity are of different origins.
248 - T. Kawaguchi , H. Uemura , T. Ohno 2010
The recently discovered high temperature superconductor F-doped LaFeAsO and related compounds represent a new class of superconductors with the highest transition temperature (Tc) apart from the cuprates. The studies ongoing worldwide are revealing that these Fe-based superconductors are forming a unique class of materials that are interesting from the viewpoint of applications. To exploit the high potential of the Fe-based superconductors for device applications, it is indispensable to establish a process that enables the growth of high quality thin films. Efforts of thin film preparation started soon after the discovery of Fe-based superconductors, but none of the earlier attempts had succeeded in an in-situ growth of a superconducting film of LnFeAs(O,F) (Ln=lanthanide), which exhibits the highest Tc to date among the Fe-based superconductors. Here, we report on the successful growth of NdFeAs(O,F) thin films on GaAs substrates, which showed well-defined superconducting transitions up to 48 K without the need of an ex-situ heat treatment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا