Red and blue particles are placed in equal proportion through-out either the complete or star graph and iteratively sampled to take simple random walk steps. Mutual annihilation occurs when particles with different colors meet. We compare the time it takes to extinguish every particle to the analogous time in the (simple to analyze) one-type setting. Additionally, we study the effect of asymmetric particle speeds.
We consider a model of language development, known as the naming game, in which agents invent, share and then select descriptive words for a single object, in such a way as to promote local consensus. When formulated on a finite and connected graph, a global consensus eventually emerges in which all agents use a common unique word. Previous numerical studies of the model on the complete graph with $n$ agents suggest that when no words initially exist, the time to consensus is of order $n^{1/2}$, assuming each agent speaks at a constant rate. We show rigorously that the time to consensus is at least $n^{1/2-o(1)}$, and that it is at most constant times $log n$ when only two words remain. In order to do so we develop sample path estimates for quasi-left continuous semimartingales with bounded jumps.
We consider diffusion-limited annihilating systems with mobile $A$-particles and stationary $B$-particles placed throughout a graph. Mutual annihilation occurs whenever an $A$-particle meets a $B$-particle. Such systems, when ran in discrete time, are also referred to as parking processes. We show for a broad family of graphs and random walk kernels that augmenting either the size or variability of the initial placements of particles increases the total occupation time by $A$-particles of a given subset of the graph. A corollary is that the same phenomenon occurs with the total lifespan of all particles in internal diffusion-limited aggregation.
We study a model of competition between two types evolving as branching random walks on $mathbb{Z}^d$. The two types are represented by red and blue balls respectively, with the rule that balls of different colour annihilate upon contact. We consider initial configurations in which the sites of $mathbb{Z}^d$ contain one ball each, which are independently coloured red with probability $p$ and blue otherwise. We address the question of emph{fixation}, referring to the sites eventually settling for a given colour, or not. Under a mild moment condition on the branching rule, we prove that the process will fixate almost surely for $p eq 1/2$, and that every site will change colour infinitely often almost surely for the balanced initial condition $p=1/2$.
We study an infinite system of moving particles, where each particle is of type A or B. Particles perform independent random walks at rates D_A>0 and D_B>0, and the interaction is given by mutual annihilation A+B->0. The initial condition is i.i.d. with finite first moment. We show that this system is site-recurrent, that is, each site is visited infinitely many times. We also generalize a lower bound on the density decay of Bramson and Lebowitz by considering a construction that handles different jump rates.
Place an $A$-particle at each site of a graph independently with probability $p$ and otherwise place a $B$-particle. $A$- and $B$-particles perform independent continuous time random walks at rates $lambda_A$ and $lambda_B$, respectively, and annihilate upon colliding with a particle of opposite type. Bramson and Lebowitz studied the setting $lambda_A = lambda_B$ in the early 1990s. Despite recent progress, many basic questions remain unanswered for when $lambda_A eq lambda_B$. For the critical case $p=1/2$ on low-dimensional integer lattices, we give a lower bound on the expected number of particles at the origin that matches physicists predictions. For the process with $lambda_B=0$ on the integers and the bidirected regular tree, we give sharp upper and lower bounds for the expected total occupation time of the root at and approaching criticality.