No Arabic abstract
The use of accelerometers in wildlife tracking provides a fine-scale data source for understanding animal behavior and decision-making. Current methods in movement ecology focus on behavior as a driver of movement mechanisms. Our Markov model is a flexible and efficient method for inference related to effects on behavior that considers dependence between current and past behaviors. We applied this model to behavior data from six greater white-fronted geese (Anser albifrons frontalis) during spring migration in mid-continent North America and considered likely drivers of behavior, including habitat, weather and time of day effects. We modeled the transitions between flying, feeding, stationary and walking behavior states using a first-order Bayesian Markov model. We introduced Polya-Gamma latent variables for automatic sampling of the covariate coefficients from the posterior distribution and we calculated the odds ratios from the posterior samples. Our model provides a unifying framework for including both acceleration and Global Positioning System data. We found significant differences in behavioral transition rates among habitat types, diurnal behavior and behavioral changes due to weather. Our model provides straightforward inference of behavioral time allocation across used habitats, which is not amenable in activity budget or resource selection frameworks.
Reliable mortality estimates at the subnational level are essential in the study of health inequalities within a country. One of the difficulties in producing such estimates is the presence of small populations, where the stochastic variation in death counts is relatively high, and so the underlying mortality levels are unclear. We present a Bayesian hierarchical model to estimate mortality at the subnational level. The model builds on characteristic age patterns in mortality curves, which are constructed using principal components from a set of reference mortality curves. Information on mortality rates are pooled across geographic space and smoothed over time. Testing of the model shows reasonable estimates and uncertainty levels when the model is applied to both simulated data which mimic US counties, and real data for French departments. The estimates produced by the model have direct applications to the study of subregional health patterns and disparities.
Sensor noise sources cause differences in the signal recorded across pixels in a single image and across multiple images. This paper presents a Bayesian approach to decomposing and characterizing the sensor noise sources involved in imaging with digital cameras. A Bayesian probabilistic model based on the (theoretical) model for noise sources in image sensing is fitted to a set of a time-series of images with different reflectance and wavelengths under controlled lighting conditions. The image sensing model is a complex model, with several interacting components dependent on reflectance and wavelength. The properties of the Bayesian approach of defining conditional dependencies among parameters in a fully probabilistic model, propagating all sources of uncertainty in inference, makes the Bayesian modeling framework more attractive and powerful than classical methods for approaching the image sensing model. A feasible correspondence of noise parameters to their expected theoretical behaviors and well calibrated posterior predictive distributions with a small root mean square error for model predictions have been achieved in this study, thus showing that the proposed model accurately approximates the image sensing model. The Bayesian approach could be extended to formulate further components aimed at identifying even more specific parameters of the imaging process.
Narwhal is one of the most mysterious marine mammals, due to its isolated habitat in the Arctic region. Tagging is a technology that has the potential to explore the activities of this species, where behavioral information can be collected from instrumented individuals. This includes accelerometer data, diving and acoustic data as well as GPS positioning. An essential element in understanding the ecological role of toothed whales is to characterize their feeding behavior and estimate the amount of food consumption. Buzzes are sounds emitted by toothed whales that are related directly to the foraging behaviors. It is therefore of interest to measure or estimate the rate of buzzing to estimate prey intake. The main goal of this paper is to find a way to detect prey capture attempts directly from accelerometer data, and thus be able to estimate food consumption without the need for the more demanding acoustic data. We develop 3 automated buzz detection methods based on accelerometer and depth data solely. We use a dataset from 5 narwhals instrumented in East Greenland in 2018 to train, validate and test a logistic regression model and the machine learning algorithms random forest and deep learning, using the buzzes detected from acoustic data as the ground truth. The deep learning algorithm performed best among the tested methods. We conclude that reliable buzz detectors can be derived from high-frequency-sampling, back-mounted accelerometer tags, thus providing an alternative tool for studies of foraging ecology of marine mammals in their natural environments. We also compare buzz detection with certain movement patterns, such as sudden changes in acceleration (jerks), found in other marine mammal species for estimating prey capture. We find that narwhals do not seem to make big jerks when foraging and conclude that their hunting patterns in that respect differ from other marine mammals.
We propose a hierarchical Bayesian model to estimate the proportional contribution of source populations to a newly founded colony. Samples are derived from the first generation offspring in the colony, but mating may occur preferentially among migrants from the same source population. Genotypes of the newly founded colony and source populations are used to estimate the mixture proportions, and the mixture proportions are related to environmental and demographic factors that might affect the colonizing process. We estimate an assortative mating coefficient, mixture proportions, and regression relationships between environmental factors and the mixture proportions in a single hierarchical model. The first-stage likelihood for genotypes in the newly founded colony is a mixture multinomial distribution reflecting the colonizing process. The environmental and demographic data are incorporated into the model through a hierarchical prior structure. A simulation study is conducted to investigate the performance of the model by using different levels of population divergence and number of genetic markers included in the analysis. We use Markov chain Monte Carlo (MCMC) simulation to conduct inference for the posterior distributions of model parameters. We apply the model to a data set derived from grey seals in the Orkney Islands, Scotland. We compare our model with a similar model previously used to analyze these data. The results from both the simulation and application to real data indicate that our model provides better estimates for the covariate effects.
The naive importance sampling estimator, based on samples from a single importance density, can be numerically unstable. Instead, we consider generalized importance sampling estimators where samples from more than one probability distribution are combined. We study this problem in the Markov chain Monte Carlo context, where independent samples are replaced with Markov chain samples. If the chains converge to their respective target distributions at a polynomial rate, then under two finite moment conditions, we show a central limit theorem holds for the generalized estimators. Further, we develop an easy to implement method to calculate valid asymptotic standard errors based on batch means. We also provide a batch means estimator for calculating asymptotically valid standard errors of Geyer(1994) reverse logistic estimator. We illustrate the method using a Bayesian variable selection procedure in linear regression. In particular, the generalized importance sampling estimator is used to perform empirical Bayes variable selection and the batch means estimator is used to obtain standard errors in a high-dimensional setting where current methods are not applicable.