No Arabic abstract
Readout and control of fermionic spins in solid-state systems are key primitives of quantum information processing and microscopic magnetic sensing. The highly localized nature of most fermionic spins decouples them from parasitic degrees of freedom, but makes long-range interoperability difficult to achieve. In light of this challenge, an active effort is underway to integrate fermionic spins with circuit quantum electrodynamics (cQED), which was originally developed in the field of superconducting qubits to achieve single-shot, quantum-non-demolition (QND) measurements and long-range couplings. However, single-shot readout of an individual spin with cQED has remained elusive due to the difficulty of coupling a resonator to a particle trapped by a charge-confining potential. Here we demonstrate the first single-shot, cQED readout of a single spin. In our novel implementation, the spin is that of an individual superconducting quasiparticle trapped in the Andreev levels of a semiconductor nanowire Josephson element. Due to a spin-orbit interaction inside the nanowire, this superconducting spin directly determines the flow of supercurrent through the element. We harnessed this spin-dependent supercurrent to achieve both a zero-field spin splitting as well as a long-range interaction between the quasiparticle and a superconducting microwave resonator. Owing to the strength of this interaction in our device, measuring the resultant spin-dependent resonator frequency yielded QND spin readout with 92% fidelity in 1.9 $mu$s and allowed us to monitor the quasiparticles spin in real time. These results pave the way for new fermionic cQED devices: superconducting spin qubits operating at zero magnetic field, devices in which the spin has enhanced governance over the circuit, and time-domain measurements of Majorana modes.
Under resonant irradiation, a quantum system can undergo coherent (Rabi) oscillations in time. We report evidence for such oscillations in a _continuously_ observed three-Josephson-junction flux qubit, coupled to a high-quality tank circuit tuned to the Rabi frequency. In addition to simplicity, this method of_Rabi spectroscopy_ enabled a long coherence time of about 2.5 microseconds, corresponding to an effective qubit quality factor ~7000.
Creating a transmon qubit using semiconductor-superconductor hybrid materials not only provides electrostatic control of the qubit frequency, it also allows parts of the circuit to be electrically connected and disconnected in situ by operating a semiconductor region of the device as a field-effect transistor (FET). Here, we exploit this feature to compare in the same device characteristics of the qubit, such as frequency and relaxation time, with related transport properties such as critical supercurrent and normal-state resistance. Gradually opening the FET to the monitoring circuit allows the influence of weak-to-strong DC monitoring of a live qubit to be measured. A model of this influence yields excellent agreement with experiment, demonstrating a relaxation rate mediated by a gate-controlled environmental coupling.
Interfacing superconducting quantum processors, working in the GHz frequency range, with optical quantum networks and atomic qubits is a challenging task for the implementation of distributed quantum information processing as well as for quantum communication. Using spin ensembles of rare earth ions provide an excellent opportunity to bridge microwave and optical domains at the quantum level. In this letter, we demonstrate magnetic coupling of Er$^{3+}$ spins doped in Y$_{2}$SiO$_{5}$ crystal to a high-Q coplanar superconducting resonator.
Electron spins in solids are promising candidates for quantum memories for superconducting qubits because they can have long coherence times, large collective couplings, and many quantum bits can be encoded into the spin-waves of a single ensemble. We demonstrate the coupling of electron spin ensembles to a superconducting transmission-line resonator at coupling strengths greatly exceeding the cavity decay rate and comparable to spin linewidth. We also use the enhanced coupling afforded by the small cross-section of the transmission line to perform broadband spectroscopy of ruby at millikelvin temperatures at low powers. In addition, we observe hyperfine structure in diamond P1 centers and time domain saturation-relaxation of the spins.
Long-distance two-qubit coupling, mediated by a superconducting resonator, is a leading paradigm for performing entangling operations in a quantum computer based on spins in semiconducting materials. Here, we demonstrate a novel, controllable spin-photon coupling based on a longitudinal interaction between a spin qubit and a resonator. We show that coupling a singlet-triplet qubit to a high-impedance superconducting resonator can produce the desired longitudinal coupling when the qubit is driven near the resonators frequency. We measure the energy splitting of the qubit as a function of the drive amplitude and frequency of a microwave signal applied near the resonator antinode, revealing pronounced effects close to the resonator frequency due to longitudinal coupling. By tuning the amplitude of the drive, we reach a regime with longitudinal coupling exceeding $1$ MHz. This demonstrates a new mechanism for qubit-resonator coupling, and represents a stepping stone towards producing high-fidelity two-qubit gates mediated by a superconducting resonator.