No Arabic abstract
We develop a theory for a qualitatively new type of disorder in condensed matter systems arising from local twist-angle fluctuations in two strongly coupled van der Waals monolayers twisted with respect to each other to create a flat band moire superlattice. The new paradigm of twist angle disorder arises from the currently ongoing intense research activity in the physics of twisted bilayer graphene. In experimental samples of pristine twisted bilayer graphene, which are nominally free of impurities and defects, the main source of disorder is believed to arise from the unavoidable and uncontrollable non-uniformity of the twist angle across the sample. To address this new physics of twist-angle disorder, we develop a real-space, microscopic model of twisted bilayer graphene where the angle enters as a free parameter. In particular, we focus on the size of single-particle energy gaps separating the miniband from the rest of the spectrum, the Van Hove peaks, the renormalized Dirac cone velocity near charge neutrality, and the minibandwidth. We find that the energy gaps and minibandwidth are strongly affected by disorder while the renormalized velocity remains virtually unchanged. We discuss the implications of our results for the ongoing experiments on twisted bilayer graphene. Our theory is readily generalized to future studies of twist angle disorder effects on all electronic properties of moire superlattices created by twisting two coupled van der Waals materials with respect to each other.
We investigate the topological properties of Floquet-engineered twisted bilayer graphene above the magic angle driven by circularly polarized laser pulses. Employing a full Moire-unit-cell tight-binding Hamiltonian based on first-principles electronic structure we show that the band topology in the bilayer, at twisting angles above 1.05$^circ$, essentially corresponds to the one of single-layer graphene. However, the ability to open topologically trivial gaps in this system by a bias voltage between the layers enables the full topological phase diagram to be explored, which is not possible in single-layer graphene. Circularly polarized light induces a transition to a topologically nontrivial Floquet band structure with the Berry curvature of a Chern insulator. Importantly, the twisting allows for tuning electronic energy scales, which implies that the electronic bandwidth can be tailored to match realistic driving frequencies in the ultraviolet or mid-infrared photon-energy regimes. This implies that Moire superlattices are an ideal playground for combining twistronics, Floquet engineering, and strongly interacting regimes out of thermal equilibrium.
Magic-angle twisted bilayer graphene (TBG), with rotational misalignment close to 1.1$^circ$, features isolated flat electronic bands that host a rich phase diagram of correlated insulating, superconducting, ferromagnetic, and topological phases. The origins of the correlated insulators and superconductivity, and the interplay between them, are particularly elusive. Both states have been previously observed only for angles within $pm0.1^circ$ from the magic-angle value and occur in adjacent or overlapping electron density ranges; nevertheless, it is still unclear how the two states are related. Beyond the twist angle and strain, the dependence of the TBG phase diagram on the alignment and thickness of insulating hexagonal boron nitride (hBN) used to encapsulate the graphene sheets indicates the importance of the microscopic dielectric environment. Here we show that adding an insulating tungsten-diselenide (WSe$_2$) monolayer between hBN and TBG stabilizes superconductivity at twist angles much smaller than the established magic-angle value. For the smallest angle of $theta$ = 0.79$^circ$, we still observe clear superconducting signatures, despite the complete absence of the correlated insulating states and vanishing gaps between the dispersive and flat bands. These observations demonstrate that, even though electron correlations may be important, superconductivity in TBG can exist even when TBG exhibits metallic behaviour across the whole range of electron density. Finite-magnetic-field measurements further reveal breaking of the four-fold spin-valley symmetry in the system, consistent with large spin-orbit coupling induced in TBG via proximity to WSe$_2$. Our results highlight the importance of symmetry breaking effects in stabilizing electronic states in TBG and open new avenues for engineering quantum phases in moire systems.
Identifying the microscopic mechanism for superconductivity in magic-angle twisted bilayer graphene (MATBG) is an outstanding open problem. While MATBG exhibits a rich phase-diagram, driven partly by the strong interactions relative to the electronic bandwidth, its single-particle properties are unique and likely play an important role in some of the phenomenological complexity. Some of the salient features include an electronic bandwidth smaller than the characteristic phonon bandwidth and a non-trivial structure of the underlying Bloch wavefunctions. We perform a theoretical study of the cooperative effects due to phonons and plasmons on pairing in order to disentangle the distinct role played by these modes on superconductivity. We consider a variant of MATBG with an enlarged number of fermion flavors, $N gg 1$, where the study of pairing instabilities reduces to the conventional (weak-coupling) Eliashberg framework. In particular, we show that certain umklapp processes involving mini-optical phonon modes, which arise physically as a result of the folding of the original acoustic branch of graphene due to the moire superlattice structure, contribute significantly towards enhancing pairing. We also investigate the role played by the dynamics of the screened Coulomb interaction on pairing, which leads to an enhancement in a narrow window of fillings, and study the effect of external screening due to a metallic gate on superconductivity. At strong coupling the dynamical pairing interaction leaves a spectral mark in the single particle tunneling density of states. We thus predict such features will appear at specific frequencies of the umklapp phonons corresponding to the sound velocity of graphene times an integer multiple of the Brillouin zone size.
The effect of short-range disorder in nodal line semimetals is studied by numerically exact means. For arbitrary small disorder, a novel semimetallic phase is unveiled for which the momentum-space amplitude of the ground-state wave function is concentrated around the nodal line and follows a multifractal distribution. At a critical disorder strength, a semimetal to compressible metal transition occurs, coinciding with a multi- to single-fractality transition. The universality class of this critical point is characterized by the correlation length and dynamical exponents. At considerably higher disorder, an Anderson metal-insulator transition takes place. Our results show that the nature of the semimetallic phase in non-clean samples is fundamentally different from a clean nodal semimetal.
Recently twisted bilayer graphene (t-BLG) emerges as a new strongly correlated physical platform near a magic twist angle, which hosts many exciting phenomena such as the Mott-like insulating phases, unconventional superconducting behavior and emergent ferromagnetism. Besides the apparent significance of band flatness, band topology may be another critical element in determining strongly correlated twistronics yet receives much less attention. Here we report compelling evidence for nontrivial noninteracting band topology of t-BLG moire Dirac bands through a systematic nonlocal transport study, in conjunction with an examination rooted in $K$-theory. The moire band topology of t-BLG manifests itself as two pronounced nonlocal responses in the electron and hole superlattice gaps. We further show that the nonlocal responses are robust to the interlayer electric field, twist angle, and edge termination, exhibiting a universal scaling law. While an unusual symmetry of t-BLG trivializes Berry curvature, we elucidate that two $Z_2$ invariants characterize the topology of the moire Dirac bands, validating the topological edge origin of the observed nonlocal responses. Our findings not only provide a new perspective for understanding the emerging strongly correlated phenomena in twisted van der Waals heterostructures, but also suggest a potential strategy to achieve topologically nontrivial metamaterials from topologically trivial quantum materials based on twist engineering.