Do you want to publish a course? Click here

Pairing in magic-angle twisted bilayer graphene: role of phonon and plasmon umklapp

108   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Identifying the microscopic mechanism for superconductivity in magic-angle twisted bilayer graphene (MATBG) is an outstanding open problem. While MATBG exhibits a rich phase-diagram, driven partly by the strong interactions relative to the electronic bandwidth, its single-particle properties are unique and likely play an important role in some of the phenomenological complexity. Some of the salient features include an electronic bandwidth smaller than the characteristic phonon bandwidth and a non-trivial structure of the underlying Bloch wavefunctions. We perform a theoretical study of the cooperative effects due to phonons and plasmons on pairing in order to disentangle the distinct role played by these modes on superconductivity. We consider a variant of MATBG with an enlarged number of fermion flavors, $N gg 1$, where the study of pairing instabilities reduces to the conventional (weak-coupling) Eliashberg framework. In particular, we show that certain umklapp processes involving mini-optical phonon modes, which arise physically as a result of the folding of the original acoustic branch of graphene due to the moire superlattice structure, contribute significantly towards enhancing pairing. We also investigate the role played by the dynamics of the screened Coulomb interaction on pairing, which leads to an enhancement in a narrow window of fillings, and study the effect of external screening due to a metallic gate on superconductivity. At strong coupling the dynamical pairing interaction leaves a spectral mark in the single particle tunneling density of states. We thus predict such features will appear at specific frequencies of the umklapp phonons corresponding to the sound velocity of graphene times an integer multiple of the Brillouin zone size.

rate research

Read More

Magic-angle twisted trilayer graphene (MATTG) recently emerged as a highly tunable platform for studying correlated phases of matter, such as correlated insulators and superconductivity. Superconductivity occurs in a range of doping levels that is bounded by van Hove singularities which stimulates the debate of the origin and nature of superconductivity in this material. In this work, we discuss the role of spin-fluctuations arising from atomic-scale correlations in MATTG for the superconducting state. We show that in a phase diagram as function of doping ($ u$) and temperature, nematic superconducting regions are surrounded by ferromagnetic states and that a superconducting dome with $T_c approx 2,mathrm{K}$ appears between the integer fillings $ u =-2$ and $ u = -3$. Applying a perpendicular electric field enhances superconductivity on the electron-doped side which we relate to changes in the spin-fluctuation spectrum. We show that the nematic unconventional superconductivity leads to pronounced signatures in the local density of states detectable by scanning tunneling spectroscopy measurements.
We investigate the interplay of magnetic fluctuations and Cooper pairing in twisted bilayer graphene from a purely microscopic model within a large-scale tight-binding approach resolving the AA ngstrom scale. For local onsite repulsive interactions and using the random-phase approximation for spin fluctuations, we derive a microscopic effective pairing interaction that we use for self-consistent solutions of the Bogoliubov-de-Gennes equations of superconductivity. We study the predominant pairing types as function of interaction strength, temperature and band filling. For large regions of this parameter space, we find chiral $d$-wave pairing regimes, spontaneously breaking time-reversal symmetry, separated by magnetic instabilities at integer band fillings. Interestingly, the $d$-wave pairing is strongly concentrated in the AA regions of the moire unit cell and exhibits phase windings of integer multiples of $2pi$ around these superconducting islands, i.e. pinned vortices. The spontaneous circulating current creates a distinctive magnetic field pattern. This signature of the chiral pairing should be measurable by state-of-the-art experimental techniques.
We present a systematic study of the low-energy collective modes for different insulating states at integer fillings in twisted bilayer graphene. In particular, we provide a simple counting rule for the total number of soft modes, and analyze their energies and symmetry quantum numbers in detail. To study the soft mode spectra, we employ time dependent Hartree-Fock whose results are reproduced analytically via an effective sigma model description. We find two different types of low-energy modes - (i) approximate Goldstone modes associated with breaking an enlarged U(4)$times$U(4) symmetry and, surprisingly, a set of (ii) nematic modes with non-zero angular momentum under three-fold rotation. The modes of type (i) include true gapless Goldstone modes associated with exact symmetries in addition to gapped pseudo-Goldstone modes associated with approximate symmetries. While the modes of type (ii) are always gapped, we show that their gap decreases as the Berry curvature grows more concentrated. For realistic parameter values, the gapped soft modes of both types have comparable gaps of only a few meV, and lie completely inside the mean-field bandgap. The entire set of soft modes emerge as Goldstone modes of a different idealized model in which Berry flux is limited to a solenoid, which enjoys an enlarged U(8) symmetry. Furthermore, we discuss the number of Goldstone modes for each symmetry-broken state, distinguishing the linearly vs quadratically dispersing modes. Finally, we present a general symmetry analysis of the soft modes for all possible insulating Slater determinant states at integer fillings that preserve translation symmetry, independent of the energetic details. The resulting soft mode degeneracies and symmetry quantum numbers provide a fingerprint of the different insulting states enabling their experimental identification from a measurement of their soft modes.
96 - Ya-Ning Ren , Chen Lu , Yu Zhang 2019
In the magic-angle twisted bilayer graphene (MA-TBG), strong electron-electron (e-e) correlations caused by the band-flattening lead to many exotic quantum phases such as superconductivity, correlated insulator, ferromagnetism, and quantum anomalous Hall effects, when its low-energy van Hove singularities (VHSs) are partially filled. Here our high-resolution scanning tunneling microscope and spectroscopy measurements demonstrate that the e-e correlation in a non-magic-angle TBG with a twist angle {theta} = 1.49 still plays an important role in determining its electronic properties. Our most interesting observation on that sample is that when one of its VHS is partially filled, the one associated peak in the spectrum splits into four peaks. Our analysis based on the continuum model suggests that such a one-to-four split of the VHS originates from the formation of an interaction-driven spin-valley-polarized metallic state near the VHS, lifting both the spin and valley degeneracies. Our results for this non-magic-angle TBG reveal a new symmetry-breaking phase, which has not been identified in the MA-TBG or in other systems.
The electronic properties of twisted bilayer graphene (TBG) can be dramatically different from those of a single graphene layer, in particular when the two layers are rotated relative to each other by a small angle. TBG has recently attracted a great deal of interest, sparked by the discovery of correlated insulating and superconducting states, for twist angle $theta$ close to a so-called magic angle $approx 1.1{deg}$. In this work, we unveil, via near-field optical microscopy, a collective plasmon mode in charge-neutral TBG near the magic angle, which is dramatically different from the ordinary single-layer graphene intraband plasmon. In selected regions of our samples, we find a gapped collective mode with linear dispersion, akin to the bulk magnetoplasmons of a two-dimensional (2D) electron gas. We interpret these as interband plasmons and associate those with the optical transitions between quasi-localized states originating from the moire superlattice. Surprisingly, we find a higher plasmon group velocity than expected, which implies an enhanced strength of the corresponding optical transition. This points to a weaker interlayer coupling in the AA regions. These intriguing optical properties offer new insights, complementary to other techniques, on the carrier dynamics in this novel quantum electron system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا