Do you want to publish a course? Click here

Audio Source Separation Using Variational Autoencoders and Weak Class Supervision

115   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a source separation method that is trained by observing the mixtures and the class labels of the sources present in the mixture without any access to isolated sources. Since our method does not require source class labels for every time-frequency bin but only a single label for each source constituting the mixture signal, we call this scenario as weak class supervision. We associate a variational autoencoder (VAE) with each source class within a non-negative (compositional) model. Each VAE provides a prior model to identify the signal from its associated class in a sound mixture. After training the model on mixtures, we obtain a generative model for each source class and demonstrate our method on one-second mixtures of utterances of digits from 0 to 9. We show that the separation performance obtained by source class supervision is as good as the performance obtained by source signal supervision.



rate research

Read More

Variational auto-encoders (VAEs) are deep generative latent variable models that can be used for learning the distribution of complex data. VAEs have been successfully used to learn a probabilistic prior over speech signals, which is then used to perform speech enhancement. One advantage of this generative approach is that it does not require pairs of clean and noisy speech signals at training. In this paper, we propose audio-visual variants of VAEs for single-channel and speaker-independent speech enhancement. We develop a conditional VAE (CVAE) where the audio speech generative process is conditioned on visual information of the lip region. At test time, the audio-visual speech generative model is combined with a noise model based on nonnegative matrix factorization, and speech enhancement relies on a Monte Carlo expectation-maximization algorithm. Experiments are conducted with the recently published NTCD-TIMIT dataset as well as the GRID corpus. The results confirm that the proposed audio-visual CVAE effectively fuses audio and visual information, and it improves the speech enhancement performance compared with the audio-only VAE model, especially when the speech signal is highly corrupted by noise. We also show that the proposed unsupervised audio-visual speech enhancement approach outperforms a state-of-the-art supervised deep learning method.
153 - Hideyuki Tachibana 2020
In neural network-based monaural speech separation techniques, it has been recently common to evaluate the loss using the permutation invariant training (PIT) loss. However, the ordinary PIT requires to try all $N!$ permutations between $N$ ground truths and $N$ estimates. Since the factorial complexity explodes very rapidly as $N$ increases, a PIT-based training works only when the number of source signals is small, such as $N = 2$ or $3$. To overcome this limitation, this paper proposes a SinkPIT, a novel variant of the PIT losses, which is much more efficient than the ordinary PIT loss when $N$ is large. The SinkPIT is based on Sinkhorns matrix balancing algorithm, which efficiently finds a doubly stochastic matrix which approximates the best permutation in a differentiable manner. The author conducted an experiment to train a neural network model to decompose a single-channel mixture into 10 sources using the SinkPIT, and obtained promising results.
Music source separation with deep neural networks typically relies only on amplitude features. In this paper we show that additional phase features can improve the separation performance. Using the theoretical relationship between STFT phase and amplitude, we conjecture that derivatives of the phase are a good feature representation opposed to the raw phase. We verify this conjecture experimentally and propose a new DNN architecture which combines amplitude and phase. This joint approach achieves a better signal-to distortion ratio on the DSD100 dataset for all instruments compared to a network that uses only amplitude features. Especially, the bass instrument benefits from the phase information.
Recent work has shown that recurrent neural networks can be trained to separate individual speakers in a sound mixture with high fidelity. Here we explore convolutional neural network models as an alternative and show that they achieve state-of-the-art results with an order of magnitude fewer parameters. We also characterize and compare the robustness and ability of these different approaches to generalize under three different test conditions: longer time sequences, the addition of intermittent noise, and different datasets not seen during training. For the last condition, we create a new dataset, RealTalkLibri, to test source separation in real-world environments. We show that the acoustics of the environment have significant impact on the structure of the waveform and the overall performance of neural network models, with the convolutional model showing superior ability to generalize to new environments. The code for our study is available at https://github.com/ShariqM/source_separation.
In this paper we address the problem of enhancing speech signals in noisy mixtures using a source separation approach. We explore the use of neural networks as an alternative to a popular speech variance model based on supervised non-negative matrix factorization (NMF). More precisely, we use a variational autoencoder as a speaker-independent supervised generative speech model, highlighting the conceptual similarities that this approach shares with its NMF-based counterpart. In order to be free of generalization issues regarding the noisy recording environments, we follow the approach of having a supervised model only for the target speech signal, the noise model being based on unsupervised NMF. We develop a Monte Carlo expectation-maximization algorithm for inferring the latent variables in the variational autoencoder and estimating the unsupervised model parameters. Experiments show that the proposed method outperforms a semi-supervised NMF baseline and a state-of-the-art fully supervised deep learning approach.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا