Do you want to publish a course? Click here

Characterizing the mesh size of polymer solutions via the pore size distribution

73   0   0.0 ( 0 )
 Added by Valerio Sorichetti
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In order to characterize the geometrical mesh size $xi$, we simulate a solution of coarse-grained polymers with densities ranging from the dilute to the concentrated regime and for different chain lengths. Conventional ways to estimate $xi$ rely either on scaling assumptions which give $xi$ only up to an unknown multiplicative factor, or on measurements of the monomer density fluctuation correlation length $xi_c$. We determine $xi_c$ from the monomer structure factor and from the radial distribution function, and find that the identification $xi=xi_c$ is not justified outside of the semidilute regime. In order to better characterize $xi$, we compute the pore size distribution (PSD) following two different definitions, one by Torquato et al. (Ref.1) and one by Gubbins et al. (Ref.2). We show that the mean values of the two distributions, $langle r rangle_T$ and $langle r rangle_G$, both display the behavior predicted for $xi$ by scaling theory, and argue that $xi$ can be identified with either one of these quantities. This identification allows to interpret the PSD as the distribution of mesh sizes, a quantity which conventional methods cannot access. Finally, we show that it is possible to map a polymer solution on a system of hard or overlapping spheres, for which Torquatos PSD can be computed analytically and reproduces accurately the PSD of the solution. We give an expression that allows $langle r rangle_T$ to be estimated with great accuracy in the semidilute regime by knowing only the radius of gyration and the density of the polymers.



rate research

Read More

We study pore nucleation in a model membrane system, a freestanding polymer film. Nucleated pores smaller than a critical size close, while pores larger than the critical size grow. Holes of varying size were purposefully prepared in liquid polymer films, and their evolution in time was monitored using optical and atomic force microscopy to extract a critical radius. The critical radius scales linearly with film thickness for a homopolymer film. The results agree with a simple model which takes into account the energy cost due to surface area at the edge of the pore. The energy cost at the edge of the pore is experimentally varied by using a lamellar-forming diblock copolymer membrane. The underlying molecular architecture causes increased frustration at the pore edge resulting in an enhanced cost of pore formation.
In our previous publication (Ref. 1) we have shown that the data for the normalized diffusion coefficient of the polymers, $D_p/D_{p0}$, falls on a master curve when plotted as a function of $h/lambda_d$, where $h$ is the mean interparticle distance and $lambda_d$ is a dynamic length scale. In the present note we show that also the normalized diffusion coefficient of the nanoparticles, $D_N/D_{N0}$, collapses on a master curve when plotted as a function of $h/R_h$, where $R_h$ is the hydrodynamic radius of the nanoparticles.
Molecular dynamics simulations are carried out to investigate mechanical properties and porous structure of binary glasses subjected to steady shear. The model vitreous systems were prepared via thermal quench at constant volume to a temperature well below the glass transition. The quiescent samples are characterized by a relatively narrow pore size distribution whose mean size is larger at lower glass densities. We find that in the linear regime of deformation, the shear modulus is a strong function of porosity, and the individual pores become slightly stretched while their structural topology remains unaffected. By contrast, with further increasing strain, the shear stress saturates to a density-dependent plateau value, which is accompanied by pore coalescence and a gradual development of a broader pore size distribution with a discrete set of peaks at large length scales.
Using molecular dynamics simulations we study the static and dynamic properties of spherical nanoparticles (NPs) embedded in a disordered and polydisperse polymer network. Purely repulsive (RNP) as well as weakly attractive (ANP) polymer-NP interactions are considered. It is found that for both types of particles the NP dynamics at intermediate and at long times is controlled by the confinement parameter $C=sigma_N/lambda$, where $sigma_N$ is the NP diameter and $lambda$ is the dynamic localization length of the crosslinks. Three dynamical regimes are identified: i) For weak confinement ($C lesssim 1$) the NPs can freely diffuse through the mesh; ii) For strong confinement ($C gtrsim 1$) NPs proceed by means of activated hopping; iii) For extreme confinement ($C gtrsim 3$) the mean squared displacement shows on intermediate time scales a quasi-plateau since the NPs are trapped by the mesh for very long times. Escaping from this local cage is a process that depends strongly on the local environment, thus giving rise to an extremely heterogeneous relaxation dynamics. The simulation data are compared with the two main theories for the diffusion process of NPs in gels. Both theories give a very good description of the $C-$dependence of the NP diffusion constant, but fail to reproduce the heterogeneous dynamics at intermediate time scales.
Using molecular dynamics simulation, we study the plastic zone created during nanoindentation of a large CuZr glass system. The plastic zone consists of a core region, in which virtually every atom undergoes plastic rearrangement, and a tail, where the density distribution of the plastically active atoms decays to zero. Compared to crystalline substrates, the plastic zone in metallic glasses is significantly smaller than in crystals. The so-called plastic-zone size factor, which relates the radius of the plastic zone to the contact radius of the indenter with the substrate, assumes values around 1, while in crystals -- depending on the crystal structure -- values of 2--3 are common. The small plastic zone in metallic glasses is caused by the essentially homogeneous deformation in the amorphous matrix, while in crystals heterogeneous dislocations prevail, whose growth leads to a marked extension of the plastic zone.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا