Do you want to publish a course? Click here

Evolution of the pore size distribution in sheared binary glasses

60   0   0.0 ( 0 )
 Added by Nikolai Priezjev V.
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Molecular dynamics simulations are carried out to investigate mechanical properties and porous structure of binary glasses subjected to steady shear. The model vitreous systems were prepared via thermal quench at constant volume to a temperature well below the glass transition. The quiescent samples are characterized by a relatively narrow pore size distribution whose mean size is larger at lower glass densities. We find that in the linear regime of deformation, the shear modulus is a strong function of porosity, and the individual pores become slightly stretched while their structural topology remains unaffected. By contrast, with further increasing strain, the shear stress saturates to a density-dependent plateau value, which is accompanied by pore coalescence and a gradual development of a broader pore size distribution with a discrete set of peaks at large length scales.



rate research

Read More

The evolution of porous structure, potential energy and local density in binary glasses under oscillatory shear deformation is investigated using molecular dynamics simulations. The porous glasses were initially prepared via a rapid thermal quench from the liquid state across the glass transition and allowed to phase separate and solidify at constant volume, thus producing an extended porous network in an amorphous solid. We find that under periodic shear, the potential energy decreases over consecutive cycles due to gradual rearrangement of the glassy material, and the minimum of the potential energy after thousands of shear cycles is lower at larger strain amplitudes. Moreover, with increasing cycle number, the pore size distributions become more skewed toward larger length scales where a distinct peak is developed and the peak intensity is enhanced at larger strain amplitudes. The numerical analysis of the local density distribution functions demonstrates that cyclic loading leads to formation of higher density solid domains and homogenization of the glass phase with reduced density.
We report on the results of a molecular dynamics simulation study of binodal glassy systems, formed in the process of isochoric rapid quenching from a high-temperature fluid phase. The transition to vitreous state occurs due to concurrent spinodal decomposition and solidification of the matter. The study is focused on topographies of the porous solid structures and their dependence on temperature and average density. To quantify the pore-size distributions, we put forth a scaling relation that provides a robust data collapse in systems with high porosity. We also find that the local density of glassy phases is broadly distributed, and, with increasing average glass density, a distinct peak in the local density distribution is displaced toward higher values.
In order to characterize the geometrical mesh size $xi$, we simulate a solution of coarse-grained polymers with densities ranging from the dilute to the concentrated regime and for different chain lengths. Conventional ways to estimate $xi$ rely either on scaling assumptions which give $xi$ only up to an unknown multiplicative factor, or on measurements of the monomer density fluctuation correlation length $xi_c$. We determine $xi_c$ from the monomer structure factor and from the radial distribution function, and find that the identification $xi=xi_c$ is not justified outside of the semidilute regime. In order to better characterize $xi$, we compute the pore size distribution (PSD) following two different definitions, one by Torquato et al. (Ref.1) and one by Gubbins et al. (Ref.2). We show that the mean values of the two distributions, $langle r rangle_T$ and $langle r rangle_G$, both display the behavior predicted for $xi$ by scaling theory, and argue that $xi$ can be identified with either one of these quantities. This identification allows to interpret the PSD as the distribution of mesh sizes, a quantity which conventional methods cannot access. Finally, we show that it is possible to map a polymer solution on a system of hard or overlapping spheres, for which Torquatos PSD can be computed analytically and reproduces accurately the PSD of the solution. We give an expression that allows $langle r rangle_T$ to be estimated with great accuracy in the semidilute regime by knowing only the radius of gyration and the density of the polymers.
In a recent paper [S. Mandal et al., Phys. Rev. E 88, 022129 (2013)] the nature of spatial correlations of plasticity in hard sphere glasses was addressed both via computer simulations and in experiments. It was found that the experimentally obtained correlations obey a power law whereas the correlations from simulations are better fitted by an exponential decay. We here provide direct evidence--- via simulations of a hard sphere glass in 2D---that this discrepancy is a consequence of the finite system size in the 3D simulations. By extending the study to a 2D soft disk model at zero temperature, the robustness of the power-law decay in sheared amorphous solids is underlined. Deviations from a power law occur when either reducing the packing fraction towards the supercooled regime in the case of hard spheres or changing the dissipation mechanism from contact dissipation to a mean-field type drag for the case of soft disks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا