Do you want to publish a course? Click here

On the Bargmann-Fock-Fueter and Bergman-Fueter integral transforms

101   0   0.0 ( 0 )
 Added by Kamal Diki
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

This paper deals with some special integral transforms of Bargmann-Fock type in the setting of quaternionic valued slice hyperholomorphic and Cauchy-Fueter regular functions. The construction is based on the well-known Fueter mapping theorem. In particular, starting with the normalized Hermite functions we can construct an Appell system of quaternionic regular polynomials. The ranges of such integral transforms are quaternionic reproducing kernel Hilbert spaces of regular functions. New integral representations and generating functions in this quaternionic setting are obtained in both the Fock and Bergman cases.



rate research

Read More

In this paper, we prove that slice polyanalytic functions on quaternions can be considered as solutions of a power of some special global operator with nonconstant coefficients as it happens in the case of slice hyperholomorphic functions. We investigate also an extension version of the Fueter mapping theorem in this polyanalytic setting. In particular, we show that under axially symmetric conditions it is always possible to construct Fueter regular and poly-Fueter regular functions through slice polyanalytic ones using what we call the poly-Fueter mappings. We study also some integral representations of these results on the quaternionic unit ball.
In this paper we study the compactness of operators on the Bergman space of the unit ball and on very generally weighted Bargmann-Fock spaces in terms of the behavior of their Berezin transforms and the norms of the operators acting on reproducing kernels. In particular, in the Bergman space setting we show how a vanishing Berezin transform combined with certain (integral) growth conditions on an operator $T$ are sufficient to imply that the operator is compact. In the weighted Bargmann-Fock space setting we show that the reproducing kernel thesis for compactness holds for operators satisfying similar growth conditions. The main results extend the results of Xia and Zheng to the case of the Bergman space when $1 < p < infty$, and in the weighted Bargmann-Fock space setting, our results provide new, more general conditions that imply the work of Xia and Zheng via a more familiar approach that can also handle the $1 < p < infty$ case.
182 - Juntao Du , Songxiao Li , Dan Qu 2021
We study the boundedness and compactness of the generalized Volterra integral operator on weighted Bergman spaces with doubling weights on the unit disk. A generalized Toeplitz operator is defined and the boundedness, compactness and Schatten class of this operator are investigated on the Hilbert weighted Bergman space. As an application, Schatten class membership of generalized Volterra integral operators are also characterized. Finally, we also get the characterizations of Schatten class membership of generalized Toeplitz operator and generalized Volterra integral operators on the Hardy space $H^2$.
We give an alternate proof of the existence of the asymptotic expansion of the Bergman kernel associated to the $k$-th tensor powers of a positive line bundle $L$ in a $frac{1}{sqrt{k}}$-neighborhood of the diagonal using elementary methods. We use the observation that after rescaling the Kahler potential $kvarphi$ in a $frac{1}{sqrt{k}}$-neighborhood of a given point, the potential becomes an asymptotic perturbation of the Bargmann-Fock metric. We then prove that the Bergman kernel is also an asymptotic perturbation of the Bargmann-Fock Bergman kernel.
103 - Guangfu Cao , Li He , Ji Li 2021
We provide a boundedness criterion for the integral operator $S_{varphi}$ on the fractional Fock-Sobolev space $F^{s,2}(mathbb C^n)$, $sgeq 0$, where $S_{varphi}$ (introduced by Kehe Zhu) is given by begin{eqnarray*} S_{varphi}F(z):= int_{mathbb{C}^n} F(w) e^{z cdotbar{w}} varphi(z- bar{w}) dlambda(w) end{eqnarray*} with $varphi$ in the Fock space $F^2(mathbb C^n)$ and $dlambda(w): = pi^{-n} e^{-|w|^2} dw$ the Gaussian measure on the complex space $mathbb{C}^{n}$. This extends the recent result in Cao--Li--Shen--Wick--Yan. The main approach is to develop multipliers on the fractional Hermite-Sobolev space $W_H^{s,2}(mathbb R^n)$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا