Do you want to publish a course? Click here

Localization and Compactness in Bergman and Fock spaces

306   0   0.0 ( 0 )
 Added by Joshua Isralowitz
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we study the compactness of operators on the Bergman space of the unit ball and on very generally weighted Bargmann-Fock spaces in terms of the behavior of their Berezin transforms and the norms of the operators acting on reproducing kernels. In particular, in the Bergman space setting we show how a vanishing Berezin transform combined with certain (integral) growth conditions on an operator $T$ are sufficient to imply that the operator is compact. In the weighted Bargmann-Fock space setting we show that the reproducing kernel thesis for compactness holds for operators satisfying similar growth conditions. The main results extend the results of Xia and Zheng to the case of the Bergman space when $1 < p < infty$, and in the weighted Bargmann-Fock space setting, our results provide new, more general conditions that imply the work of Xia and Zheng via a more familiar approach that can also handle the $1 < p < infty$ case.



rate research

Read More

In this article we introduce Variable exponent Fock spaces and study some of their basic properties such as the boundedness of evaluation functionals, density of polynomials, boundedness of a Bergman-type projection and duality.
We completely characterize the boundedness of the Volterra type integration operators $J_b$ acting from the weighted Bergman spaces $A^p_alpha$ to the Hardy spaces $H^q$ of the unit ball of $mathbb{C}^n$ for all $0<p,q<infty$. A partial solution to the case $n=1$ was previously obtained by Z. Wu in cite{Wu}. We solve the cases left open there and extend all the results to the setting of arbitrary complex dimension $n$. Our tools involve area methods from harmonic analysis, Carleson measures and Kahane-Khinchine type inequalities, factorization tricks for tent spaces of sequences, as well as techniques and integral estimates related to Hardy and Bergman spaces.
We completely characterize the boundedness of the area operators from the Bergman spaces $A^p_alpha(mathbb{B}_ n)$ to the Lebesgue spaces $L^q(mathbb{S}_ n)$ for all $0<p,q<infty$. For the case $n=1$, some partial results were previously obtained by Wu. Especially, in the case $q<p$ and $q<s$, we obtain the new characterizations for the area operators to be bounded. We solve the cases left open there and extend the results to $n$-complex dimension.
182 - Juntao Du , Songxiao Li , Dan Qu 2021
We study the boundedness and compactness of the generalized Volterra integral operator on weighted Bergman spaces with doubling weights on the unit disk. A generalized Toeplitz operator is defined and the boundedness, compactness and Schatten class of this operator are investigated on the Hilbert weighted Bergman space. As an application, Schatten class membership of generalized Volterra integral operators are also characterized. Finally, we also get the characterizations of Schatten class membership of generalized Toeplitz operator and generalized Volterra integral operators on the Hardy space $H^2$.
Bounded and compact differences of two composition operators acting from the weighted Bergman space $A^p_omega$ to the Lebesgue space $L^q_ u$, where $0<q<p<infty$ and $omega$ belongs to the class $mathcal{D}$ of radial weights satisfying a two-sided doubling condition, are characterized. On the way to the proofs a new description of $q$-Carleson measures for $A^p_omega$, with $p>q$ and $omegainmathcal{D}$, involving pseudohyperbolic discs is established. This last-mentioned result generalizes the well-known characterization of $q$-Carleson measures for the classical weighted Bergman space $A^p_alpha$ with $-1<alpha<infty$ to the setting of doubling weights. The case $omegainwidehat{mathcal{D}}$ is also briefly discussed and an open problem concerning this case is posed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا