Do you want to publish a course? Click here

Spectral functions and critical dynamics of the $O(4)$ model from classical-statistical lattice simulations

120   0   0.0 ( 0 )
 Added by Dominik Smith
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We calculate spectral functions of the relativistic $O(4)$ model from real-time lattice simulations in classical-statistical field theory. While in the low and high temperature phase of the model, the spectral functions of longitudinal $(sigma)$ and transverse $(pi)$ modes are well described by relativistic quasi-particle peaks, we find a highly non-trivial behavior of the spectral functions in the cross over region, where additional structures appear. Similarly, we observe a significant broadening of the quasi-particle peaks, when the amount explicit $O(4)$ symmetry breaking is reduced. We further demonstrate that in the vicinity of the $O(4)$ critical point, the spectral functions develop an infrared power law associated with the critical dynamics, and comment on the extraction of the dynamical critical exponent $z$ from our simulations.

rate research

Read More

352 - Raghav G. Jha 2020
We consider the two-dimensional classical XY model on a square lattice in the thermodynamic limit using tensor renormalization group and precisely determine the critical temperature corresponding to the Berezinskii-Kosterlitz-Thouless (BKT) phase transition to be 0.89290(5) which is an improvement compared to earlier studies using tensor network methods.
We connect explicitly the classical $O(2)$ model in 1+1 dimensions, a model sharing important features with $U(1)$ lattice gauge theory, to physical models potentially implementable on optical lattices and evolving at physical time. Using the tensor renormalization group formulation, we take the time continuum limit and check that finite dimensional projections used in recent proposals for quantum simulators provide controllable approximations of the original model. We propose two-species Bose-Hubbard models corresponding to these finite dimensional projections at strong coupling and discuss their possible implementations on optical lattices using a $^{87}$Rb and $^{41}$K Bose-Bose mixture.
A non-perturbative Renormalization Group approach is used to calculate scaling functions for an O(4) model in d=3 dimensions in the presence of an external symmetry-breaking field. These scaling functions are important for the analysis of critical behavior in the O(4) universality class. For example, the finite-temperature phase transition in QCD with two flavors is expected to fall into this class. Critical exponents are calculated in local potential approximation. Parameterizations of the scaling functions for the order parameter and for the longitudinal susceptibility are given. Relations from universal scaling arguments between these scaling functions are investigated and confirmed. The expected asymptotic behavior of the scaling functions predicted by Griffiths is observed. Corrections to the scaling behavior at large values of the external field are studied qualitatively. These scaling corrections can become large, which might have implications for the scaling analysis of lattice QCD results.
First principle calculation of the QCD spectral functions (SPFs) based on the lattice QCD simulations is reviewed. Special emphasis is placed on the Bayesian inference theory and the Maximum Entropy Method (MEM), which is a useful tool to extract SPFs from the imaginary-time correlation functions numerically obtained by the Monte Carlo method. Three important aspects of MEM are (i) it does not require a priori assumptions or parametrizations of SPFs, (ii) for given data, a unique solution is obtained if it exists, and (iii) the statistical significance of the solution can be quantitatively analyzed. The ability of MEM is explicitly demonstrated by using mock data as well as lattice QCD data. When applied to lattice data, MEM correctly reproduces the low-energy resonances and shows the existence of high-energy continuum in hadronic correlation functions. This opens up various possibilities for studying hadronic properties in QCD beyond the conventional way of analyzing the lattice data. Future problems to be studied by MEM in lattice QCD are also summarized.
We present the unpolarized and helicity parton distribution functions calculated within lattice QCD simulations using physical values of the light quark mass. Non-perturbative renormalization is employed and the lattice data are converted to the MSbar-scheme at a scale of 2 GeV. A matching process is applied together with target mass corrections leading to the reconstruction of light-cone parton distribution functions. For both cases we find a similar behavior between the lattice and phenomenological data, and for the polarized PDF a nice overlap for a range of Bjorken-x values. This presents a major success for the emerging field of direct calculations of quark distributions using lattice QCD.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا