No Arabic abstract
An ultra-broadband transverse magnetic (TM) pass hyperuniform disordered photonic crystal (HUDPC) polarizer is proposed and demonstrated on a silicon-on-insulator platform. Propagation of the transverse electric mode is blocked by three combined effects, including the photonic bandgap (PBG) effect, diffusive (non-resonant) scattering, and bandedge resonances. Specially, the designed 30-dB bandwidth in polarization extinction ratio (PER) of 265 nm is much larger than the spectral width of the PBG (149 nm) due to using the bandedge resonances. The TM mode is in the subwavelength regime of the HUDPC and thus has a low insertion loss (IL). An ultrawide 30-dB bandwidth in PER of 210 nm (1.44-1.65 um) is experimentally demonstrated in a 12.9-um-long HUDPC polarizer with spectrally averaged PER of 39.6 dB and IL for the TM mode of 1.1 dB (IL = 0.6 dB at 1.55 um). The HUDPC polarizers can be an excellent candidate for ultra-broadband polarization filtering in the silicon photonic platform.
Hyperuniform disordered photonic materials (HDPM) are spatially correlated dielectric structures with unconventional optical properties. They can be transparent to long-wavelength radiation while at the same time have isotropic band gaps in another frequency range. This phenomenon raises fundamental questions concerning photon transport through disordered media. While optical transparency is robust against recurrent multiple scattering, little is known about other transport regimes like diffusive multiple scattering or Anderson localization. Here we investigate band gaps, and we report Anderson localization in two-dimensional stealthy HDPM using numerical simulations of the density of states and optical transport statistics. To establish a unified view, we propose a transport phase diagram. Our results show that, depending only on the degree of correlation, a dielectric material can transition from localization behavior to a bandgap crossing an intermediate regime dominated by tunneling between weakly coupled states.
We have experimentally demonstrated polarizers and polarizing beam splitters based on microwave-scale two-dimensional photonic crystals. Using polarized microwaves within certain frequency bands, we have observed a squared-sinusoid (Malus) transmission law when using the photonic crystal as a polarizer. The photonic crystal also functions as a polarizing beamsplitter; in this configuration it can be engineered to split incident polarizations in either order, making it more versatile than conventional, Brewster-angle beamsplitters.
We prove Anderson localization in a disordered photonic crystal waveguide by measuring the ensemble-averaged localization length which is controlled by the dispersion of the photonic crystal waveguide. In such structures, the localization length shows a 10-fold variation between the fast- and the slow-light regime and, in the latter case, it becomes shorter than the sample length thus giving rise to strongly confined modes. The dispersive behavior of the localization length demonstrates the close relation between Anderson localization and the photon density of states in disordered photonic crystals, which opens a promising route to controlling and exploiting Anderson localization for efficient light confinement.
We study the propagation of waves in a set of absorbing subwavelength scatterers positioned on a stealth hyperuniform point pattern. We show that spatial correlations in the disorder substantially enhance absorption compared to a fully disordered structure with the same density of scatterers. The non-resonant nature of the mechanism provides broad angular and spectral robustness. These results demonstrate the possibility to design low-density materials with blackbody-like absorption.
The purpose of this work is to understand the fundamental connection between structural correlations and light localization in three-dimensional (3D) open scattering systems of finite size. We numerically investigate the transport of vector electromagnetic waves scattered by resonant electric dipoles spatially arranged in 3D space by stealthy hyperuniform disordered point patterns. Three-dimensional stealthy hyperuniform disordered systems (3D-SHDS) are engineered with different structural correlation properties determined by their degree of stealthiness $chi$. Such fine control of exotic states of amorphous matter enables the systematic design of optical media that interpolate in a tunable fashion between uncorrelated random structures and crystalline materials. By solving the electromagnetic multiple scattering problem using Greens matrix spectral method, we establish a transport phase diagram that demonstrates a clear delocalization-localization transition beyond a critical scattering density that depends on $chi$. The transition is characterized by studying the Thouless number and the spectral statistics of the scattering resonances. In particular, by tuning the $chi$ parameter, we demonstrate large spectral gaps and suppressed sub-radiant proximity resonances, facilitating light localization. Moreover, consistently with previous studies, our results show a region of the transport phase diagram where the investigated scattering systems become transparent. Our work provides a systematic description of the transport and localization properties of light in stealthy hyperuniform structures and motivates the engineering of novel photonic systems with enhanced light-matter interactions for applications to both classical and quantum devices.