Do you want to publish a course? Click here

125-211 GHz Low Noise MMIC Amplifier Design for Radio Astronomy

215   0   0.0 ( 0 )
 Added by Daniel White
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

To achieve the low noise and wide bandwidth required for millimeter wavelength astronomy applications, superconductor-insulator-superconductor (SIS) mixer based receiver systems have typically been used. This paper investigates the performance of high electron mobility transistor (HEMT) based low noise amplifiers (LNAs) as an alternative approach for systems operating in the 125 - 211 GHz frequency range. A four-stage, common-source, unconditionally stable monolithic microwave integrated circuit (MMIC) design is presented using the state-of-the-art 35 nm indium phosphide HEMT process from Northrop Grumman Corporation. The simulated MMIC achieves noise temperature (Te) lower than 58 K across the operational bandwidth, with average Te of 38.8 K (corresponding to less than 5 times the quantum limit (hf/k) at 170 GHz) and forward transmission of 20.5 +/- 0.85 dB. Input and output reflection coefficients are better than -6 and -12 dB, respectively, across the desired bandwidth. To the authors knowledge, no LNA currently operates across the entirety of this frequency range. Successful fabrication and implementation of this LNA would challenge the dominance SIS mixers have on sub-THz receivers.



rate research

Read More

91 - Adrian Sutinjo , Daniel Ung , 2018
We present two methods for measuring the noise temperature of a differential input single-ended output (DISO) Low-Noise Amplifier (LNA) connected to an antenna. The first method is direct measurement of the DISO LNA and antenna in an anechoic chamber at ambient temperature. The second is a simple and low-cost noise parameter extraction of the DISO device using a coaxial long cable. The reconstruction of the DISO noise parameter from the noise wave measurements of the DISO LNA with one terminated input port is discussed in detail. We successfully applied these methods to the Murchison Widefield Array LNA and antenna.
MASER (Measurements, Analysis, and Simulation of Emission in the Radio range) is a comprehensive infrastructure dedicated to time-dependent low frequency radio astronomy (up to about 50 MHz). The main radio sources observed in this spectral range are the Sun, the magnetized planets (Earth, Jupiter, Saturn), and our Galaxy, which are observed either from ground or space. Ground observatories can capture high resolution data streams with a high sensitivity. Conversely, space-borne instruments can observe below the ionospheric cut-off (at about 10 MHz) and can be placed closer to the studied object. Several tools have been developed in the last decade for sharing space physics data. Data visualization tools developed by various institutes are available to share, display and analyse space physics time series and spectrograms. The MASER team has selected a sub-set of those tools and applied them to low frequency radio astronomy. MASER also includes a Python software library for reading raw data from agency archives.
Radio interferometry most commonly involves antennas or antenna arrays of identical design. The identical antenna assumption leads to a convenient and useful mathematical simplification resulting in a scalar problem. An interesting variant to this is a hybrid interferometer involving two designs. We encounter this in the characterization of low-frequency antenna/array prototypes using a homogenous low-frequency array telescope such as the Murchison Widefield Array (MWA). In this work, we present an interferometry equation that applies to hybrid antennas. The resulting equation involves vector inner products rather than scalar multiplications. We discuss physical interpretation and useful applications of this concept in the areas of sensitivity measurement and calibration of an antenna/array under test using a compact calibrator source.
This paper summarizes the design process and metrics for the latest antenna design for 2 radio telescopes, SKALA4 for the SKA1-LOW instrument and the V-feed for the HERA telescope. In the paper we briefly describe the main features of the antenna element design and the most important figures of merit for both instruments. Finally, we show the response of both designs against some of these figures of merit.
Data Models are an essential part of automatic data processing, but even more so when trying to tie together data coming from many different data sources, as is the case for the International Virtual Observatory. In this talk we will review the different data models used in the IVOA, which parts of that Data Modelling work are still incomplete, specially in radio wavelengths, and the work the AMIGA group has done within the IVOA Data Modelling Working Group to overcome those shortcomings both in missing data models and support for Radio Astronomy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا