No Arabic abstract
Particle acceleration in relativistic jets to very high energies occurs at the expense of the dissipation of magnetic or kinetic energy. Therefore, understanding the processes that can trigger this dissipation is key to the characterization of the energy budgets and particle acceleration mechanisms at action in active galaxies. Instabilities and entrainment are two obvious candidates to trigger dissipation. On the one hand, supersonic, relativistic flows threaded by helical fields, as expected from the standard formation models of jets in supermassive black-holes, are unstable to a series of magnetohydrodynamical instabilities, such as the Kelvin-Helmholtz, current-driven, or possibly the pressure-driven instabilities. Furthermore, in the case of expanding jets, the Rayleigh-Taylor and centrifugal instabilities may also develop. With all these destabilizing processes at action, a natural question is how can some jets keep their collimated structure along hundreds of kiloparsecs. On the other hand, the interaction of the jet with stars and clouds of gas that cross the flow in their orbits around the galactic centers provides another scenario in which kinetic energy can be efficiently converted into internal energy and particles can be accelerated to non-thermal energies. In this contribution, I review the conditions under which these processes occur and their role both in jet evolution and propagation and energy dissipation.
Current wide-area radio surveys are dominated by active galactic nuclei, yet many of these sources have no identified optical counterparts. Here we investigate whether one can constrain the nature and properties of these sources, using Fanaroff-Riley type II (FRII) radio galaxies as probes. These sources are easy to identify since the angular separation of their lobes remains almost constant at some tens of arcseconds for z>1. Using a simple algorithm applied to the FIRST survey, we obtain the largest FRII sample to date, containing over ten thousand double-lobed sources. A subset of 459 sources is matched to SDSS quasars. This sample yields a statistically meaningful description of the fraction of quasars with lobes as a function of redshift and luminosity. This relation is combined with the bolometric quasar luminosity function, as derived from surveys at IR to hard X-ray frequencies, and a disc-lobe correlation to obtain a robust prediction for the density of FRIIs on the radio sky. We find that the observed density can be explained by the population of known quasars, implying that the majority of powerful jets originate from a radiatively efficient accretion flow with a linear jet-disc coupling. Finally, we show that high-redshift jets are more often quenched within 100 kpc, suggesting a higher efficiency of jet-induced feedback into their host galaxies.
Radio-loud active galaxies have been found to exhibit a close connection to galactic mergers and host galaxy star-formation quenching. We present preliminary results of an optical spectroscopic investigation of the AKARI NEP field. We focus on the population of radio-loud AGN and use photometric and spectroscopic information to study both their star-formation and nuclear activity components. Preliminary results show that radio-AGN are associated with early type, massive galaxies with relatively old stellar populations.
We have analyzed the parsec-scale jet kinematics of 447 bright radio-loud AGN, based on 15 GHz VLBA data obtained between 1994 August 31 and 2019 August 4. We present new total intensity and linear polarization maps obtained between 2017 January 1 to 2019 August 4 for 143 of these AGN. We tracked 1923 bright features for five or more epochs in 419 jets. A majority (60%) of the well-sampled jet features show either accelerated or non-radial motion. In 47 jets there is at least one non-accelerating feature with an unusually slow apparent speed. Most of the jets show variations of 10 to 50 deg in their inner jet position angle (PA) over time, although the overall distribution has a continuous tail out to 200 deg. AGN with SEDs peaked at lower frequencies tend to have more variable PAs, with BL Lacs being less variable than quasars. The Fermi LAT gamma-ray associated AGN also tend to have more variable PAs than the non-LAT AGN in our sample. We attribute these trends to smaller viewing angles for the lower spectral peaked and LAT-associated jets. We identified 13 AGN where multiple features emerge over decade-long periods at systematically increasing or decreasing PAs. Since the ejected features do not fill the entire jet cross-section, this behavior is indicative of a precessing flow instability near the jet base. Although some jets show indications of oscillatory PA evolution, we claim no bona fide cases of periodicity since the fitted periods are comparable to the total VLBA time coverage.
We investigate the astrophysics of radio-emitting star-forming galaxies and ac- tive galactic nuclei (AGNs), and elucidate their statistical properties in the radio band including luminosity functions, redshift distributions, and number counts at sub-mJy flux levels, that will be crucially probed by next-generation radio continuum surveys. Specifically, we exploit the model-independent approach by Mancuso et al. (2016a,b) to compute the star formation rate functions, the AGN duty cycles and the conditional probability of a star-forming galaxy to host an AGN with given bolometric luminosity. Coupling these ingredients with the radio emission properties associated to star formation and nuclear activity, we compute relevant statistics at different radio frequencies, and disentangle the relative con- tribution of star-forming galaxies and AGNs in different radio luminosity, radio flux, and redshift ranges. Finally, we highlight that radio-emitting star-forming galaxies and AGNs are expected to host supermassive black holes accreting with different Eddington ratio distributions, and to occupy different loci in the galaxy main sequence diagrams. These specific predictions are consistent with current datasets, but need to be tested with larger statistics via future radio data with multi-band coverage on wide areas, as it will become routinely achievable with the advent of the SKA and its precursors.
There are several key open questions as to the nature and origin of AGN including: 1) what initiates the active phase, 2) the duration of the active phase, and 3) the effect of the AGN on the host galaxy. Critical new insights to these can be achieved by probing the central regions of AGN with sub-mas angular resolution at UV/optical wavelengths. In particular, such observations would enable us to constrain the energetics of the AGN feedback mechanism, which is critical for understanding the role of AGN in galaxy formation and evolution. These observations can only be obtained by long-baseline interferometers or sparse aperture telescopes in space, since the aperture diameters required are in excess of 500 m - a regime in which monolithic or segmented designs are not and will not be feasible and because these observations require the detection of faint emission near the bright unresolved continuum source, which is impossible from the ground, even with adaptive optics. Two mission concepts which could provide these invaluable observations are NASAs Stellar Imager (SI; Carpenter et al. 2008 & http://hires.gsfc.nasa.gov/si/) interferometer and ESAs Luciola (Labeyrie 2008) sparse aperture hypertelescope.