Do you want to publish a course? Click here

Coupling Constant Corrections in a Holographic Model of Heavy Ion Collisions with Nonzero Baryon Number Density

63   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Sufficiently energetic collisions of heavy ions result in the formation of a droplet of a strongly coupled liquid state of QCD matter known as quark-gluon plasma. By using gauge-gravity duality (holography), a model of a rapidly hydrodynamizing and thermalizing process like this can be constructed by colliding sheets of energy density moving at the speed of light and tracking the subsequent evolution. In this work, we consider the dual gravitational description of such collisions in the most general bulk theory with a four-derivative gravitational action containing a dynamical metric and a gauge field in five dimensions. Introducing the bulk gauge field enables the analysis of collisions of sheets which carry nonzero baryon number density in addition to energy density. Introducing the four-derivative terms enables consideration of such collisions in a gauge theory with finite gauge coupling, working perturbatively in the inverse coupling. While the dynamics of energy and momentum in the presence of perturbative inverse-coupling corrections has been analyzed previously, here we are able to determine the effect of such finite coupling corrections on the dynamics of the density of a conserved global charge, which we take as a model for the dynamics of nonzero baryon number density. In accordance with expectations, as the coupling is reduced we observe that after the collisions less baryon density ends up stopped at mid-rapidity and more of it ends up moving near the lightcone.



rate research

Read More

We develop a new dynamical model for high energy heavy-ion collisions in the beam energy region of the highest net-baryon densities on the basis of non-equilibrium microscopic transport model JAM and macroscopic 3+1D hydrodynamics by utilizing a dynamical initialization method. In this model,dynamical fluidization of a system is controlled by the source terms of the hydrodynamic fields. In addition, time dependent core-corona separation of hot regions is implemented. We show that our new model describes multiplicities and mean transverse mass in heavy-ion collisions within a beam energy region of $3<sqrt{s_{NN}}<30$ GeV. Good agreement of the beam energy dependence of the $K^+/pi^+$ ratio is obtained, which is explained by the fact that a part of the system is not thermalized in our core-corona approach.
Recent experiments at RHIC and LHC have demonstrated that there are excellent opportunities to produce light baryonic clusters of exotic matter (strange and anti-matter) in ultra-relativistic ion collisions. Within the hybrid-transport model UrQMD we show that the coalescence mechanism can naturally explain the production of these clusters in the ALICE experiment at LHC. As a consequence of this mechanism we predict the rapidity domains where the yields of such clusters are much larger than the observed one at midrapidity. This new phenomenon can lead to unique methods for producing exotic nuclei.
129 - Yu.B. Ivanov 2013
Simulations of relativistic heavy-ion collisions within the three-fluid model employing a purely hadronic equation of state (EoS) and t
A hybrid (hydrodynamics + hadronic transport) theoretical framework is assembled to model the bulk dynamics of relativistic heavy-ion collisions at energies accessible in the Beam Energy Scan (BES) program at the Relativistic Heavy-Ion Collider (RHIC) and the NA61/SHINE experiment at CERN. The systems energy-momentum tensor and net baryon current are evolved according to relativistic hydrodynamics with finite shear viscosity and non-zero net baryon diffusion. Our hydrodynamic description is matched to a hadronic transport model in the dilute region. With this fully integrated theoretical framework, we present a pilot study of the hadronic chemistry, particle spectra, and anisotropic flow. Phenomenological effects of a non-zero net-baryon current and its diffusion on hadronic observables are presented for the first time. The importance of the hadronic transport phase is also investigated.
72 - Jing Qian 2016
Higher-order anisotropic flows in heavy-ion collisions are affected by nonlinear mode coupling effects. It has been suggested that the associated nonlinear hydrodynamic response coefficients probe the transport properties and are largely insensitive to the spectrum of initial density fluctuations of the medium created in these collisions. To test this suggestion, we explore nonlinear mode coupling effects in event-by-event viscous fluid dynamics, using two different models for the fluctuating initial density profiles, and compare the nonlinear coupling coefficients between the initial eccentricity vectors before hydrodynamic expansion and the final flow vectors after the expansion. For several mode coupling coefficients we find significant sensitivity to the initial fluctuation spectrum. They all exhibit strong sensitivity to the specific shear viscosity at freeze-out, but only weak dependence on the shear viscosity during hydrodynamic evolution.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا