Do you want to publish a course? Click here

Mode-coupling effects in anisotropic flow in heavy-ion collisions

73   0   0.0 ( 0 )
 Added by Ulrich Heinz
 Publication date 2016
  fields
and research's language is English
 Authors Jing Qian




Ask ChatGPT about the research

Higher-order anisotropic flows in heavy-ion collisions are affected by nonlinear mode coupling effects. It has been suggested that the associated nonlinear hydrodynamic response coefficients probe the transport properties and are largely insensitive to the spectrum of initial density fluctuations of the medium created in these collisions. To test this suggestion, we explore nonlinear mode coupling effects in event-by-event viscous fluid dynamics, using two different models for the fluctuating initial density profiles, and compare the nonlinear coupling coefficients between the initial eccentricity vectors before hydrodynamic expansion and the final flow vectors after the expansion. For several mode coupling coefficients we find significant sensitivity to the initial fluctuation spectrum. They all exhibit strong sensitivity to the specific shear viscosity at freeze-out, but only weak dependence on the shear viscosity during hydrodynamic evolution.



rate research

Read More

The correlation between the mean transverse momentum of outgoing particles, $langle p_t rangle$, and the magnitude of anisotropic flow, $v_n$, has recently been measured in Pb+Pb collisions at the CERN Large Hadron Collider, as a function of the collision centrality. We confirm the previous observation that event-by-event hydrodynamics predicts a correlation between $v_n$ and $langle p_t rangle$ that is similar to that measured in data. We show that the magnitude of this correlation can be directly predicted from the initial condition of the hydrodynamic calculation, for $n=2,3$, if one replaces $v_n$ by the corresponding initial-state anisotropy, $varepsilon_n$, and $langle p_trangle$ by the total energy per unit rapidity of the fluid at the beginning of the hydrodynamic expansion.
176 - B.Alver , G.Roland 2010
We introduce the concepts of participant triangularity and triangular flow in heavy-ion collisions, analogous to the definitions of participant eccentricity and elliptic flow. The participant triangularity characterizes the triangular anisotropy of the initial nuclear overlap geometry and arises from event-by-event fluctuations in the participant-nucleon collision points. In studies using a multi-phase transport model (AMPT), a triangular flow signal is observed that is proportional to the participant triangularity and corresponds to a large third Fourier coefficient in two-particle azimuthal correlation functions. Using two-particle azimuthal correlations at large pseudorapidity separations measured by the PHOBOS and STAR experiments, we show that this Fourier component is also present in data. Ratios of the second and third Fourier coefficients in data exhibit similar trends as a function of centrality and transverse momentum as in AMPT calculations. These findings suggest a significant contribution of triangular flow to the ridge and broad away-side features observed in data. Triangular flow provides a new handle on the initial collision geometry and collective expansion dynamics in heavy-ion collisions.
282 - Peng Yang , Lin Li , Yu Zhou 2021
Radial flow can be directly extracted from the azimuthal distribution of mean transverse rapidity. We apply the event-plane method and the two-particle correlation method to estimate the anisotropic Fourier coefficient of the azimuthal distribution of mean transverse rapidity. Using the event sample generated by a multiphase transport model with string melting, we show that both methods are effective. For the two-particle correlation method to be reliable, the mean number of particles in an azimuthal bin must be above a certain threshold. Using these two methods, anisotropic radial flow can be estimated in a model-independent way in relativistic heavy-ion collisions.
We present a simple description of the energy density profile created in a nucleus-nucleus collision, motivated by high-energy QCD. The energy density is modeled as the sum of contributions coming from elementary collisions between localized charges and a smooth nucleus. Each of these interactions creates a sharply-peaked source of energy density falling off at large distances like $1/r^2$, corresponding to the two-dimensional Coulomb field of a point charge. Our model reproduces the one-point and two-point functions of the energy density field calculated in the framework of the color glass condensate effective theory, to leading logarithmic accuracy. We apply it to the description of eccentricity fluctuations. Unlike other existing models of initial conditions for heavy-ion collisions, it allows us to reproduce simultaneously the centrality dependence of elliptic and triangular flow.
We investigate the possibilities of using measurements in present and future experiments on heavy ion collisions to answer some longstanding problems in hadronic physics, namely identifying hadronic molecular states and exotic hadrons with multiquark components. The yields of a selected set of exotic hadron candidates in relativistic heavy ion collisions are discussed in the coalescence model in comparison with the statistical model. We find that the yield of a hadron is typically an order of magnitude smaller when it is a compact multiquark state, compared to that of an excited hadronic state with normal quark numbers. We also find that some loosely bound hadronic molecules are formed more abundantly than the statistical model prediction by a factor of two or more. Moreover, due to the significant numbers of charm and bottom quarks produced at RHIC and even larger numbers expected at LHC, some of the proposed heavy exotic hadrons could be produced with sufficient abundance for detection, making it possible to study these new exotic hadrons in heavy ion collisions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا