Do you want to publish a course? Click here

Generalized algorithms for the approximate matrix polynomial GCD of reducing data uncertainties with application to MIMO system and control

87   0   0.0 ( 0 )
 Added by Antonio Fazzi
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Computation of (approximate) polynomials common factors is an important problem in several fields of science, like control theory and signal processing. While the problem has been widely studied for scalar polynomials, the scientific literature in the framework of matrix polynomials seems to be limited to the problem of exact greatest common divisors computation. In this paper, we generalize two algorithms from scalar to matrix polynomials. The first one is fast and simple. The second one is more accurate but computationally more expensive. We test the performances of the two algorithms and observe similar behavior to the one in the scalar case. Finally we describe an application to multi-input multi-output linear time-invariant dynamical systems.



rate research

Read More

We study a variant of the univariate approximate GCD problem, where the coefficients of one polynomial f(x)are known exactly, whereas the coefficients of the second polynomial g(x)may be perturbed. Our approach relies on the properties of the matrix which describes the operator of multiplication by gin the quotient ring C[x]=(f). In particular, the structure of the null space of the multiplication matrix contains all the essential information about GCD(f; g). Moreover, the multiplication matrix exhibits a displacement structure that allows us to design a fast algorithm for approximate GCD computation with quadratic complexity w.r.t. polynomial degrees.
We use the well-known observation that the solutions of Jacobis differential equation can be represented via non-oscillatory phase and amplitude functions to develop a fast algorithm for computing multi-dimensional Jacobi polynomial transforms. More explicitly, it follows from this observation that the matrix corresponding to the discrete Jacobi transform is the Hadamard product of a numerically low-rank matrix and a multi-dimensional discrete Fourier transform (DFT) matrix. The application of the Hadamard product can be carried out via $O(1)$ fast Fourier transforms (FFTs), resulting in a nearly optimal algorithm to compute the multidimensional Jacobi polynomial transform.
Approximate random matrix models for $kappa-mu$ and $eta-mu$ faded multiple input multiple output (MIMO) communication channels are derived in terms of a complex Wishart matrix. The proposed approximation has the least Kullback-Leibler (KL) divergence from the original matrix distribution. The utility of the results are demonstrated in a) computing the average capacity/rate expressions of $kappa-mu$/$eta-mu$ MIMO systems b) computing outage probability (OP) expressions for maximum ratio combining (MRC) for $kappa-mu$/$eta-mu$ faded MIMO channels c) ergodic rate expressions for zero-forcing (ZF) receiver in an uplink single cell massive MIMO scenario with low resolution analog-to-digital converters (ADCs) in the antennas. These approximate expressions are compared with Monte-Carlo simulations and a close match is observed.
149 - Chengmei Niu , Hanyu Li 2021
In this paper, we investigate the randomized algorithms for block matrix multiplication from random sampling perspective. Based on the A-optimal design criterion, the optimal sampling probabilities and sampling block sizes are obtained. To improve the practicability of the block sizes, two modified ones with less computation cost are provided. With respect to the second one, a two step algorithm is also devised. Moreover, the probability error bounds for the proposed algorithms are given. Extensive numerical results show that our methods outperform the existing one in the literature.
In this paper, we develop two parameter-robust numerical algorithms for Biot model and applied the algorithms in brain edema simulations. By introducing an intermediate variable, we derive a multiphysics reformulation of the Biot model. Based on the reformulation, the Biot model is viewed as a generalized Stokes subproblem combining with a reaction-diffusion subproblem. Solving the two subproblems together or separately will lead to a coupled or a decoupled algorithm. We conduct extensive numerical experiments to show that the two algorithms are robust with respect to the physics parameters. The algorithms are applied to study the brain swelling caused by abnormal accumulation of cerebrospinal fluid in injured areas. The effects of key physics parameters on brain swelling are carefully investigated. It is observe that the permeability has the greatest effect on intracranial pressure (ICP) and tissue deformation; the Youngs modulus and the Poisson ratio will not affect the maximum ICP too much but will affect the tissue deformation and the developing speed of brain swelling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا