Do you want to publish a course? Click here

Parameter-robust Multiphysics Algorithms for Biot Model with Application in Brain Edema Simulation

78   0   0.0 ( 0 )
 Added by Mingchao Cai
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we develop two parameter-robust numerical algorithms for Biot model and applied the algorithms in brain edema simulations. By introducing an intermediate variable, we derive a multiphysics reformulation of the Biot model. Based on the reformulation, the Biot model is viewed as a generalized Stokes subproblem combining with a reaction-diffusion subproblem. Solving the two subproblems together or separately will lead to a coupled or a decoupled algorithm. We conduct extensive numerical experiments to show that the two algorithms are robust with respect to the physics parameters. The algorithms are applied to study the brain swelling caused by abnormal accumulation of cerebrospinal fluid in injured areas. The effects of key physics parameters on brain swelling are carefully investigated. It is observe that the permeability has the greatest effect on intracranial pressure (ICP) and tissue deformation; the Youngs modulus and the Poisson ratio will not affect the maximum ICP too much but will affect the tissue deformation and the developing speed of brain swelling.



rate research

Read More

In this paper, we aim at solving the Biot model under stabilized finite element discretizations. To solve the resulting generalized saddle point linear systems, some iterative methods are proposed and compared. In the first method, we apply the GMRES algorithm as the outer iteration. In the second method, the Uzawa method with variable relaxation parameters is employed as the outer iteration method. In the third approach, Uzawa method is treated as a fixed-point iteration, the outer solver is the so-called Anderson acceleration. In all these methods, the inner solvers are preconditioners for the generalized saddle point problem. In the preconditioners, the Schur complement approximation is derived by using Fourier analysis approach. These preconditioners are implemented exactly or inexactly. Extensive experiments are given to justify the performance of the proposed preconditioners and to compare all the algorithms.
Linear poroelasticity models have a number of important applications in biology and geophysics. In particular, Biots consolidation model is a well-known model that describes the coupled interaction between the linear response of a porous elastic medium and a diffusive fluid flow within it, assuming small deformations. Although deterministic linear poroelasticity models and finite element methods for solving them numerically have been well studied, there is little work to date on robust algorithms for solving poroelasticity models with uncertain inputs and for performing uncertainty quantification (UQ). The Biot model has a number of important physical parameters and inputs whose precise values are often uncertain in real world scenarios. In this work, we introduce and analyse the well-posedness of a new five-field model with uncertain and spatially varying Youngs modulus and hydraulic conductivity field. By working with a properly weighted norm, we establish that the weak solution is stable with respect to variations in key physical parameters, including the Poisson ratio. We then introduce a novel locking-free stochastic Galerkin mixed finite element method that is robust in the incompressible limit. Armed with the `right norm, we construct a parameter-robust preconditioner for the associated discrete systems. Our new method facilitates forward UQ, allowing efficient calculation of statistical quantities of interest and is provably robust with respect to variations in the Poisson ratio, the Biot--Willis constant and the storage coefficient, as well as the discretization parameters.
We consider a multiphysics model for the flow of Newtonian fluid coupled with Biot consolidation equations through an interface, and incorporating total pressure as an unknown in the poroelastic region. A new mixed-primal finite element scheme is proposed solving for the pairs fluid velocity - pressure and displacement - total poroelastic pressure using Stokes-stable elements, and where the formulation does not require Lagrange multipliers to set up the usual transmission conditions on the interface. The stability and well-posedness of the continuous and semi-discrete problems are analysed in detail. Our numerical study {is framed in} the context of different interfacial flow regimes in Cartesian and axisymmetric coordinates that could eventually help describe early morphologic changes associated with glaucoma development in canine species.
The aim of this paper is to analyze the robust convergence of a class of parareal algorithms for solving parabolic problems. The coarse propagator is fixed to the backward Euler method and the fine propagator is a high-order single step integrator. Under some conditions on the fine propagator, we show that there exists some critical $J_*$ such that the parareal solver converges linearly with a convergence rate near $0.3$, provided that the ratio between the coarse time step and fine time step named $J$ satisfies $J ge J_*$. The convergence is robust even if the problem data is nonsmooth and incompatible with boundary conditions. The qualified methods include all absolutely stable single step methods, whose stability function satisfies $|r(-infty)|<1$, and hence the fine propagator could be arbitrarily high-order. Moreover, we examine some popular high-order single step methods, e.g., two-, three- and four-stage Lobatto IIIC methods, and verify that the corresponding parareal algorithms converge linearly with a factor $0.31$ and the threshold for these cases is $J_* = 2$. Intensive numerical examples are presented to support and complete our theoretical predictions.
We present an arbitrarily high-order, conditionally stable, partitioned spectral deferred correction (SDC) method for solving multiphysics problems using a sequence of pre-existing single-physics solvers. This method extends the work in [1, 2], which used implicit-explicit Runge-Kutta methods (IMEX) to build high-order, partitioned multiphysics solvers. We consider a generic multiphysics problem modeled as a system of coupled ordinary differential equations (ODEs), coupled through coupling terms that can depend on the state of each subsystem; therefore the method applies to both a semi-discretized system of partial differential equations (PDEs) or problems naturally modeled as coupled systems of ODEs. The sufficient conditions to build arbitrarily high-order partitioned SDC schemes are derived. Based on these conditions, various of partitioned SDC schemes are designed. The stability of the first-order partitioned SDC scheme is analyzed in detail on a coupled, linear model problem. We show that the scheme is conditionally stable, and under conditions on the coupling strength, the scheme can be unconditionally stable. We demonstrate the performance of the proposed partitioned solvers on several classes of multiphysics problems including a simple linear system of ODEs, advection-diffusion-reaction systems, and fluid-structure interaction problems with both incompressible and compressible flows, where we verify the design order of the SDC schemes and study various stability properties. We also directly compare the accuracy, stability, and cost of the proposed partitioned SDC solver with the partitioned IMEX method in [1, 2] on this suite of test problems. The results suggest that the high-order partitioned SDC solvers are more robust than the partitioned IMEX solvers for the numerical examples considered in this work, while the IMEX methods require fewer implicit solves.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا