Do you want to publish a course? Click here

Parafermion braiding in fractional quantum Hall edge states with finite chemical potential

287   0   0.0 ( 0 )
 Added by Solofo Groenendijk
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Parafermions are non-Abelian anyons which generalize Majorana fermions and hold great promise for topological quantum computation. We study the braiding of $mathbb{Z}_{2n}$ parafermions which have been predicted to emerge as bound states in fractional quantum Hall systems at filling factor $ u = 1/n$ ($n$ odd). Using a combination of bosonization and refermionization, we calculate the energy splitting as a function of distance and chemical potential for a pair of parafermions separated by a gapped region. Braiding of parafermions in quantum Hall edge states can be implemented by repeated fusion and nucleation of parafermion pairs. We simulate the conventional braiding protocol of parafermions numerically, taking into account the finite separation and finite chemical potential. We show that a nonzero chemical potential poses challenges for the adiabaticity of the braiding process because it leads to accidental crossings in the spectrum. To remedy this, we propose an improved braiding protocol which avoids those degeneracies.



rate research

Read More

Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe/(001)Si substrate in the quantum Hall regime are reported. We find quantum Hall states in the Composite Fermion family and a precursor signal at filling fraction $ u=5/2$. We analyse the results in terms of thermally activated quantum tunneling of carriers from one internal edge state to another across saddle points in the long range impurity potential. This shows that the gaps for different filling fractions closely follow the dependence predicted by theory. We also find that the estimates of the separation of the edge states at the saddle are in line with the expectations of an electrostatic model in the lowest spin-polarised Landau level (LL), but not in the spin-reversed LL where the density of quasiparticle states is not high enough to accommodate the carriers required.
We study a model of a quantum dot coupled to a quantum Hall edge of the Laughlin state, taking into account short-range interactions between the dot and the edge. This system has been studied experimentally in electron quantum optics in the context of single particle sources. We consider driving the dot out of equilibrium by a time-dependent bias voltage. We calculate the resulting current on the edge by applying the Kubo formula to the bosonized Hamiltonian. The Hamiltonian of this system can also be mapped to the spin-boson model and in this picture, the current can be perturbatively calculated using the non-interacting blip approximation (NIBA). We show that both methods of solution are in fact equivalent. We present numerics demonstrating that the perturbative approaches capture the essential physics at early times, although they fail to capture the charge quantization (or lack thereof) in the current pulses integrated over long times.
A highly non-thermal electron distribution is generated when quantum Hall edge states originating from sources at different potentials meet at a quantum point contact. The relaxation of this distribution to a stationary form as a function of distance downstream from the contact has been observed in recent experiments [Phys. Rev. Lett. 105, 056803 (2010)]. Here we present an exact treatment of a minimal model for the system at filling factor u=2, with results that account well for the observations.
We study equilibration of quantum Hall edge states at integer filling factors, motivated by experiments involving point contacts at finite bias. Idealising the experimental situation and extending the notion of a quantum quench, we consider time evolution from an initial non-equilibrium state in a translationally invariant system. We show that electron interactions bring the system into a steady state at long times. Strikingly, this state is not a thermal one: its properties depend on the full functional form of the initial electron distribution, and not simply on the initial energy density. Further, we demonstrate that measurements of the tunneling density of states at long times can yield either an over-estimate or an under-estimate of the energy density, depending on details of the analysis, and discuss this finding in connection with an apparent energy loss observed experimentally. More specifically, we treat several separate cases: for filling factor u=1 we discuss relaxation due to finite-range or Coulomb interactions between electrons in the same channel, and for filling factor u=2 we examine relaxation due to contact interactions between electrons in different channels. In both instances we calculate analytically the long-time asymptotics of the single-particle correlation function. These results are supported by an exact solution at arbitrary time for the problem of relaxation at u=2 from an initial state in which the two channels have electron distributions that are both thermal but with unequal temperatures, for which we also examine the tunneling density of states.
We propose a general mechanism for renormalization of the tunneling exponents in edge states of the fractional quantum Hall effect. Mutual effects of the coupling with out-of-equilibrium 1/f noise and dissipation are considered both for the Laughlin sequence and for composite co- and counter-propagating edge states with Abelian or non-Abelian statistics. For states with counter-propagating modes we demonstrate the robustness of the proposed mechanism in the so called disorder-dominated phase. Prototypes of these states, such as u=2/3 and u=5/2, are discussed in detail and the rich phenomenology induced by the presence of a noisy environment is presented. The proposed mechanism justifies the strong renormalizations reported in many experimental observations carried out at low temperatures. We show how environmental effects could affect the relevance of the tunneling excitations, leading to important implications in particular for the u=5/2 case.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا