Do you want to publish a course? Click here

Influence of non-uniformity in sapphire substrates for a gravitational wave telescope

124   0   0.0 ( 0 )
 Added by Kentaro Somiya
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Construction of a large-scale cryogenic gravitational-wave telescope KAGRA has been completed and the four sapphire test masses have been installed in cryostat vacuum chambers. It recently turned out that a sapphire substrate used for one of the input test masses shows a characteristic strcuture in its transmission map due to non-uniformity of the crystal. We performed an interferometer simulation to see the influence of the non-uniformity using measured transmission/reflection maps.



rate research

Read More

The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument that will have 5 times the range of Advanced LIGO, or greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby universe, as well as observing the universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor.
Detuning the signal-recycling cavity length from a cavity resonance significantly improves the quantum noise beyond the standard quantum limit, while there is no km-scale gravitational-wave detector successfully implemented the technique. The detuning technique is known to introduce great excess noise, and such noise can be reduced by a laser modulation system with two Mach-Zehnder interferometers in series. This modulation system, termed Mach-Zehnder Modulator (MZM), also makes the control of the gravitational-wave detector more robust by introducing the third modulation field which is non-resonant in any part of the main interferometer. On the other hand, mirror displacements of the Mach-Zehnder interferometers arise a new kind of noise source coupled to the gravitational-wave signal port. In this paper, the displacement noise requirement of the MZM is derived, and also results of our proof-of-principle experiment is reported.
A dual-pass differential Fabry-Perot interferometer (DPDFPI) is one candidate of the interferometer configurations utilized in future Fabry-Perot type space gravitational wave antennas, such as Deci-hertz Interferometer Gravitational Wave Observatory. In this paper, the working principle of the DPDFPI has been investigated and necessity to adjust the absolute length of the cavity for the operation of the DPDFPI has been found. In addition, using the 55-cm-long prototype, the operation of the DPDFPI has been demonstrated for the first time and it has been confirmed that the adjustment of the absolute arm length reduces the cavity detuning as expected. This work provides the proof of concept of the DPDFPI for application to the future Fabry-Perot type space gravitational wave antennas.
KAGRA is a second-generation interferometric gravitational-wave detector with 3-km arms constructed at Kamioka, Gifu in Japan. It is now in its final installation phase, which we call bKAGRA (baseline KAGRA), with scientific observations expected to begin in late 2019. One of the advantages of KAGRA is its underground location of at least 200 m below the ground surface, which brings small seismic motion at low frequencies and high stability of the detector. Another advantage is that it cools down the sapphire test mass mirrors to cryogenic temperatures to reduce thermal noise. In April-May 2018, we have operated a 3-km Michelson interferometer with a cryogenic test mass for 10 days, which was the first time that km-scale interferometer was operated at cryogenic temperatures. In this article, we report the results of this bKAGRA Phase 1 operation. We have demonstrated the feasibility of 3-km interferometer alignment and control with cryogenic mirrors.
We describe a multivariate classifier for candidate events in a templated search for gravitational-wave (GW) inspiral signals from neutron-star--black-hole (NS-BH) binaries, in data from ground-based detectors where sensitivity is limited by non-Gaussian noise transients. The standard signal-to-noise ratio (SNR) and chi-squared test for inspiral searches use only properties of a single matched filter at the time of an event; instead, we propose a classifier using features derived from a bank of inspiral templates around the time of each event, and also from a search using approximate sine-Gaussian templates. The classifier thus extracts additional information from strain data to discriminate inspiral signals from noise transients. We evaluate a Random Forest classifier on a set of single-detector events obtained from realistic simulated advanced LIGO data, using simulated NS-BH signals added to the data. The new classifier detects a factor of 1.5 -- 2 more signals at low false positive rates as compared to the standard re-weighted SNR statistic, and does not require the chi-squared test to be computed. Conversely, if only the SNR and chi-squared values of single-detector events are available, Random Forest classification performs nearly identically to the re-weighted SNR.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا