Do you want to publish a course? Click here

Observational evidence for a local underdensity in the Universe and its effect on the measurement of the Hubble Constant

110   0   0.0 ( 0 )
 Added by Hans Boehringer
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

For precision cosmological studies it is important to know the local properties of the reference point from which we observe the Universe. Particularly for the determination of the Hubble constant with low-redshift distance indicators, the values observed depend on the average matter density within the distance range covered. Here we used the spatial distribution of galaxy clusters to map the matter density distribution. The study is based on our CLASSIX galaxy cluster survey, which is highly complete and well characterised with galaxy clusters detected in X-rays. We find a local underdensity in the cluster distribution of about 30 - 60% which extends ~85 Mpc to the north and ~170 Mpc to the south. For three regions for which the galaxy density distribution has previously been studied, we find good agreement between the density distribution of clusters and galaxies. Correcting for the bias in the cluster distribution we infer an underdensity in the matter distribution of about -0.3 +- 0.15 (-0.2 +- 0.1) in a region with a radius of about 100 (~140) Mpc. Calculating the probability of finding such an underdensity theoretically in a LambdaCDM universe with concordance cosmological parameters, we find a probability characterised by sigma-values of 1.3-3.7. This indicates low probabilities, but with values of around 10% at the lower uncertainty limit, the existence of an underdensity cannot be ruled out. Inside this underdensity, the observed Hubble parameter will be larger by about 5.5 +2.1-2.8%, which explains part of the discrepancy between the locally measured value of H_0 compared to the value of H_0 inferred from the Planck observations of cosmic microwave background anisotropies. If distance indicators outside the local underdensity are included, as in many modern analyses, this effect is diluted.



rate research

Read More

We use the largest sample to date of spectroscopic SN Ia distances and redshifts to look for evidence in the Hubble diagram of large scale outflows caused by local voids suggested to exist at z<0.15. Our sample combines data from the Pantheon sample with the Foundation survey and the most recent release of lightcurves from the Carnegie Supernova Project to create a sample of 1295 SNe over a redshift range of 0.01<z<2.26. We make use of an inhomogeneous and isotropic Lemaitre-Tolman-Bondi metric to model a void in the SN Ia distance-redshift relation. We conclude that the SN luminosity distance-redshift relation is inconsistent at the 4-5 sigma confidence level with large local underdensities (|delta| > 20%, where the density contrast delta = Delta rho /rho) proposed in some galaxy count studies, and find no evidence of a change in the Hubble constant corresponding to a void with a sharp edge in the redshift range 0.023<z<0.15. With empirical precision of sigma_H_0 = 0.60%, we conclude that the distance ladder measurement is not affected by local density contrasts, in agreement with cosmic variance of sigma_H_0 = 0.42% predicted from simulations of large-scale structure. Given that uncertainty in the distance ladder value is sigma_H_0=2.2%, this does not affect the Hubble tension. We derive a 5 sigma constraint on local density contrasts on scales larger than 69 megaparsec h^-1 of delta < 27%. The presence of local structure does not appear to impede the possibility of measuring the Hubble constant to 1% precision.
The discovery of cosmic acceleration is one of the most important developments in modern cosmology. The observation, thirteen years ago, that type Ia supernovae appear dimmer that they would have been in a decelerating universe followed by a series of independent observations involving galaxies and cluster of galaxies as well as the cosmic microwave background, all point in the same direction: we seem to be living in a flat universe whose expansion is currently undergoing an acceleration phase. In this paper, we review the various observational evidences, most of them gathered in the last decade, and the improvements expected from projects currently collecting data or in preparation.
Progressive increases in the precision of the Hubble-constant measurement via Cepheid-calibrated Type Ia supernovae (SNe Ia) have shown a discrepancy of $sim 4.4sigma$ with the current value inferred from Planck satellite measurements of the cosmic microwave background radiation and the standard $Lambda$CDM cosmological model. This disagreement does not appear to be due to known systematic errors and may therefore be hinting at new fundamental physics. Although all of the current techniques have their own merits, further improvement in constraining the Hubble constant requires the development of as many independent methods as possible. In this work, we use SNe II as standardisable candles to obtain an independent measurement of the Hubble constant. Using 7 SNe II with host-galaxy distances measured from Cepheid variables or the tip of the red giant branch, we derive H$_0= 75.8^{+5.2}_{-4.9}$ km s$^{-1}$ Mpc$^{-1}$ (statistical errors only). Our value favours that obtained from the conventional distance ladder (Cepheids + SNe Ia) and exhibits a difference of 8.4 km s$^{-1}$ Mpc$^{-1}$ from the Planck $+Lambda$CDM value. Adding an estimate of the systematic errors (2.8 km s$^{-1}$ Mpc$^{-1}$) changes the $sim 1.7sigma$ discrepancy with Planck $+Lambda$CDM to $sim 1.4sigma$. Including the systematic errors and performing a bootstrap simulation, we confirm that the local H$_0$ value exceeds the value from the early Universe with a confidence level of 95%. As in this work we only exchange SNe II for SNe Ia to measure extragalactic distances, we demonstrate that there is no evidence that SNe Ia are the source of the H$_0$ tension.
The detection of GW170817 in both gravitational waves and electromagnetic waves heralds the age of gravitational-wave multi-messenger astronomy. On 17 August 2017 the Advanced LIGO and Virgo detectors observed GW170817, a strong signal from the merger of a binary neutron-star system. Less than 2 seconds after the merger, a gamma-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source. This sky region was subsequently observed by optical astronomy facilities, resulting in the identification of an optical transient signal within $sim 10$ arcsec of the galaxy NGC 4993. These multi-messenger observations allow us to use GW170817 as a standard siren, the gravitational-wave analog of an astronomical standard candle, to measure the Hubble constant. This quantity, which represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Our measurement combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using electromagnetic data. This approach does not require any form of cosmic distance ladder; the gravitational wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be $70.0^{+12.0}_{-8.0} , mathrm{km} , mathrm{s}^{-1} , mathrm{Mpc}^{-1}$ (maximum a posteriori and 68% credible interval). This is consistent with existing measurements, while being completely independent of them. Additional standard-siren measurements from future gravitational-wave sources will provide precision constraints of this important cosmological parameter.
We perform a measurement of the Hubble constant, $H_0$, using the latest baryonic acoustic oscillations (BAO) measurements from galaxy surveys of 6dFGS, SDSS DR7 Main Galaxy Sample, BOSS DR12 sample, and eBOSS DR14 quasar sample, in the framework of a flat $Lambda$CDM model. Based on the Kullback-Leibler (KL) divergence, we examine the consistency of $H_0$ values derived from various data sets. We find that our measurement is consistent with that derived from Planck and with the local measurement of $H_0$ using the Cepheids and type Ia supernovae. We perform forecasts on $H_0$ from future BAO measurements, and find that the uncertainty of $H_0$ determined by future BAO data alone, including complete eBOSS, DESI and Euclid-like, is comparable with that from local measurements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا