Do you want to publish a course? Click here

Pseudo-gaps for random hopping models

71   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

For one-dimensional random Schrodinger operators, the integrated density of states is known to be given in terms of the (averaged) rotation number of the Prufer phase dynamics. This paper develops a controlled perturbation theory for the rotation number around an energy, at which all the transfer matrices commute and are hyperbolic. Such a hyperbolic critical energy appears in random hopping models. The main result is a Holder continuity of the rotation number at the critical energy that, under certain conditions on the randomness, implies the existence of a pseudo-gap. The proof uses renewal theory. The result is illustrated by numerics.



rate research

Read More

We extend the construction by Kuelske and Iacobelli of metastates in finite-state mean-field models in independent disorder to situations where the local disorder terms are are a sample of an external ergodic Markov chain in equilibrium. We show that for non-degenerate Markov chains, the structure of the theorems is analogous to the case of i.i.d. variables when the limiting weights in the metastate are expressed with the aid of a CLT for the occupation time measure of the chain. As a new phenomenon we also show in a Potts example that, for a degenerate non-reversible chain this CLT approximation is not enough and the metastate can have less symmetry than the symmetry of the interaction and a Gaussian approximation of disorder fluctuations would suggest.
This paper studies the delocalized regime of an ultrametric random operator whose independent entries have variances decaying in a suitable hierarchical metric on $mathbb{N}$. When the decay-rate of the off-diagonal variances is sufficiently slow, we prove that the spectral measures are uniformly $theta$-H{o}lder continuous for all $theta in (0,1)$. In finite volumes, we prove that the corresponding ultrametric random matrices have completely extended eigenfunctions and that the local eigenvalue statistics converge in the Wigner-Dyson-Mehta universality class.
We prove localization and probabilistic bounds on the minimum level spacing for a random block Anderson model without monotonicity. Using a sequence of narrowing energy windows and associated Schur complements, we obtain detailed probabilistic information about the microscopic structure of energy levels of the Hamiltonian, as well as the support and decay of eigenfunctions.
The present paper is devoted to new, improved bounds for the eigenfunctions of random operators in the localized regime. We prove that, in the localized regime with good probability, each eigenfunction is exponentially decaying outside a ball of a certain radius, which we call the localization onset length. For $ell>0$ large, we count the number of eigenfunctions having onset length larger than $ell$ and find it to be smaller than $exp(-Cell)$ times the total number of eigenfunctions in the system. Thus, most eigenfunctions localize on finite size balls independent of the system size.
Random boundary conditions are one of the simplest realizations of quenched disorder. They have been used as an illustration of various conceptual issues in the theory of disordered spin systems. Here we review some of these results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا