Do you want to publish a course? Click here

Metastates in mean-field models with random external fields generated by Markov chains

133   0   0.0 ( 0 )
 Added by Marco Formentin
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We extend the construction by Kuelske and Iacobelli of metastates in finite-state mean-field models in independent disorder to situations where the local disorder terms are are a sample of an external ergodic Markov chain in equilibrium. We show that for non-degenerate Markov chains, the structure of the theorems is analogous to the case of i.i.d. variables when the limiting weights in the metastate are expressed with the aid of a CLT for the occupation time measure of the chain. As a new phenomenon we also show in a Potts example that, for a degenerate non-reversible chain this CLT approximation is not enough and the metastate can have less symmetry than the symmetry of the interaction and a Gaussian approximation of disorder fluctuations would suggest.



rate research

Read More

In this contribution we discuss the role which incoherent boundary conditions can play in the study of phase transitions. This is a question of particular relevance for the analysis of disordered systems, and in particular of spin glasses. For the moment our mathematical results only apply to ferromagnetic models which have an exact symmetry between low-temperature phases. We give a survey of these results and discuss possibilities to extend them to some situations where many pure states can coexist. An idea of the proofs as well as the reformulation of our results in the language of Newman-Stein metastates are also presented.
For one-dimensional random Schrodinger operators, the integrated density of states is known to be given in terms of the (averaged) rotation number of the Prufer phase dynamics. This paper develops a controlled perturbation theory for the rotation number around an energy, at which all the transfer matrices commute and are hyperbolic. Such a hyperbolic critical energy appears in random hopping models. The main result is a Holder continuity of the rotation number at the critical energy that, under certain conditions on the randomness, implies the existence of a pseudo-gap. The proof uses renewal theory. The result is illustrated by numerics.
We discuss spin models on complete graphs in the mean-field (infinite-vertex) limit, especially the classical XY model, the Toy model of the Higgs sector, and related generalizations. We present a number of results coming from the theory of large deviations and Steins method, in particular, Cramer and Sanov-type results, limit theorems with rates of convergence, and phase transition behavior for these models.
539 - John Z. Imbrie 2014
For a one-dimensional spin chain with random local interactions, we prove that many-body localization follows from a physically reasonable assumption that limits the amount of level attraction in the system. The construction uses a sequence of local unitary transformations to diagonalize the Hamiltonian and connect the exact many-body eigenfunctions to the original basis vectors.
Random boundary conditions are one of the simplest realizations of quenched disorder. They have been used as an illustration of various conceptual issues in the theory of disordered spin systems. Here we review some of these results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا