Do you want to publish a course? Click here

On the ultra-compact nature of the neutron star system 1RXS J170854.4-321857: insights from X-ray spectroscopy

50   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The relatively small family of ultra-compact X-ray binary systems is of great interest for many areas of astrophysics. We report on a detailed X-ray spectral study of the persistent neutron star low mass X-ray binary 1RXS J170854.4-321857. We analysed two XMM-Newton observations obtained in late 2004 and early 2005 when, in agreement with previous studies, the system displayed an X-ray luminosity (0.5-10 keV) of ~1 x 10^36 erg s-1. The spectrum can be described by a Comptonized emission component with Gamma~1.9 and a distribution of seed photons with a temperature of ~ 0.23 keV. A prominent residual feature is present at soft energies, which is reproduced by the absorption model if over-abundances of Ne and Fe are allowed. We discuss how similar observables, that might be attributed to the peculiar (non-solar) composition of the plasma donated by the companion star, are a common feature in confirmed and candidate ultra-compact systems. Although this interpretation is still under debate, we conclude that the detection of these features along with the persistent nature of the source at such low luminosity and the intermediate-long burst that it displayed in the past confirms 1RXS J170854.4-321857as a solid ultra-compact X-ray binary candidate.



rate research

Read More

141 - N.V. Gusinskaia 2017
We present quasi-simultaneous radio (VLA) and X-ray ($Swift$) observations of the neutron star low-mass X-ray binary (NS-LMXB) 1RXS J180408.9$-$342058 (J1804) during its 2015 outburst. We found that the radio jet of J1804 was bright ($232 pm 4 mu$Jy at $10$ GHz) during the initial hard X-ray state, before being quenched by more than an order of magnitude during the soft X-ray state ($19 pm 4 mu$Jy). The source then was undetected in radio (< $13 mu$Jy) as it faded to quiescence. In NS-LMXBs, possible jet quenching has been observed in only three sources and the J1804 jet quenching we show here is the deepest and clearest example to date. Radio observations when the source was fading towards quiescence ($L_X = 10^{34-35}$ erg s$^{-1}$) show that J1804 must follow a steep track in the radio/X-ray luminosity plane with $beta > 0.7$ (where $L_R propto L_X^{beta}$). Few other sources have been studied in this faint regime, but a steep track is inconsistent with the suggested behaviour for the recently identified class of transitional millisecond pulsars. J1804 also shows fainter radio emission at $L_X < 10^{35}$ erg s$^{-1}$ than what is typically observed for accreting millisecond pulsars. This suggests that J1804 is likely not an accreting X-ray or transitional millisecond pulsar.
We report on two new quiescent {it XMM-Newton} observations (in addition to the earlier {it Swift}/XRT and {it XMM-Newton} coverage) of the cooling neutron star crust in the low-mass X-ray binary 1RXS J180408.9$-$342058. Its crust was heated during the $sim$4.5 month accretion outburst of the source. From our quiescent observations, fitting the spectra with a neutron star atmosphere model, we found that the crust had cooled from $sim$ 100 eV to $sim$73 eV from $sim$8 days to $sim$479 days after the end of its outburst. However, during the most recent observation, taken $sim$860 days after the end of the outburst, we found that the crust appeared not to have cooled further. This suggested that the crust had returned to thermal equilibrium with the neutron star core. We model the quiescent thermal evolution with the theoretical crustal cooling code NSCool and find that the source requires a shallow heat source, in addition to the standard deep crustal heating processes, contributing $sim$0.9 MeV per accreted nucleon during outburst to explain its observed temperature decay. Our high quality {it XMM-Newton} data required an additional hard component to adequately fit the spectra. This slightly complicates our interpretation of the quiescent data of 1RXS J180408.9$-$342058. The origin of this component is not fully understood.
Ultra-compact X-ray binaries (UCXBs) are low-mass X-ray binaries with hydrogen-deficient mass-donors and ultra-short orbital periods. They have been suggested to be the potential Laser Interferometer Space Antenna (LISA) sources in the low-frequency region. Several channels for the formation of UCXBs have been proposed so far. In this article, we carried out a systematic study on the He star donor channel, in which a neutron star (NS) accretes matter from a He main-sequence star through Roche-lobe overflow, where the mass-transfer is driven by gravitational wave radiation. Firstly, we followed the long-term evolution of the NS+He main-sequence star binaries by employing the stellar evolution code Modules for Experiments in Stellar Astrophysics, and thereby obtained the initial parameter spaces for the production of UCXBs. We then used these results to perform a detailed binary population synthesis approach to obtain the Galactic rates of UCXBs through this channel. We estimate the Galactic rates of UCXBs appearing as LISA sources to be $sim3.1-11.9, rm Myr^{-1}$ through this channel, and the number of such UCXB-LISA sources in the Galaxy can reach about $1-26$ calibrated by observations. The present work indicates that the He star donor channel may contribute significantly to the Galactic UCXB formation rate. We found that the evolutionary tracks of UCXBs through this channel can account for the location of the five transient sources with relatively long orbital periods quite well. We also found that such UCXBs can be identified by their locations in the mass-transfer rate versus the orbital period diagram.
The symbiotic X-ray binary 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its ~5.4h NS spin period is the longest among all known accretion-powered pulsars and exhibited large (~7%) fluctuations over 8 years. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe Kalpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (~60-80%), and the location in the Corbet diagram favor high B-field (>~1e+12 G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (1e+33-1e+35 erg/s), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a ~1e+13 G NS, this scheme can explain the ~5.4 h equilibrium rotation without employing the magnetar-like field (~1e+16 G) required in the disk accretion case. The time-scales of multiple irregular flares (~50 s) can also be attributed to the free-fall time from the Alfven shell for a ~1e+13 G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.
Non-solar composition of the donor star in ultra-compact X-ray binaries may have a pronounced effect on the fluorescent lines appearing in their spectra due to reprocessing of primary radiation by the accretion disk and the white dwarf surface. We show that the most dramatic and easily observable consequence of the anomalous C/O abundance, is the significant, by more than an order of magnitude, attenuation of the Ka line of iron. It is caused by screening of the presence of iron by oxygen - in the C/O dominated material the main interaction process for a E ~ 7keV photon is absorption by oxygen rather than by iron, contrary to the solar composition case. Ionization of oxygen at high mass accretion rates adds a luminosity dependence to this behavior - the iron line is significantly suppressed only at low luminosity, log(LX) less than 37-37.5, and should recover its nominal strength at higher luminosity. The increase of the EW of the Ka lines of carbon and oxygen, on the other hand, saturates at rather moderate values. Screening by He is less important, due to its low ionization threshold and because in the accretion disk it is mostly ionized. Consequently, in the case of the He-rich donor, the iron line strength remains close to its nominal value, determined by the iron abundance in the accretion disk. This opens the possibility of constraining the nature of donor stars in UCXBs by means of X-ray spectroscopy with moderate energy resolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا