Do you want to publish a course? Click here

Searches for other vacua II: A new Higgstory at the cosmological collider

119   0   0.0 ( 0 )
 Added by Junwu Huang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The detection of an oscillating pattern in the bispectrum of density perturbations could suggest the existence of a high-energy second minimum in the Higgs potential. If the Higgs field resided in this new minimum during inflation and was brought back to the electroweak vacuum by thermal corrections during reheating, the coupling of Standard Model particles to the inflaton would leave its imprint on the bispectrum. We focus on the fermions, whose dispersion relation can be modified by the coupling to the inflaton, leading to an enhanced particle production during inflation even if their mass during inflation is larger than the Hubble scale. This results in a large non-analytic contribution to non-Gaussianities, with an amplitude $f_{rm NL}$ as large as $100$ in the squeezed limit, potentially detectable in future 21-cm surveys. Measuring the contributions from two fermions would allow us to compute the ratio of their masses, and to ascribe the origin of the signal to a new Higgs minimum. Such a discovery would be a tremendous step towards understanding the vacuum instability of the Higgs potential, and could have fascinating implications for anthropic considerations.



rate research

Read More

63 - Anson Hook , Junwu Huang 2019
We discuss models in which vacua other than our own can be directly observed in the present universe. Models with density-dependent vacuum structure can give rise to `non-lethal-vacua: vacua with lower energy-density than our vacuum, but only in regions with finite Standard Model densities. These models provide an explicit example of a bubble which is confined to a finite region of space and produces potentially detectable signatures, unlike standard Coleman tunneling events where bubbles expand at the speed of light and are never directly observable. We study the expansion and contraction of a confined bubble created after a core-collapse supernova, focusing on energy deposition that may be observable in the vicinity of a supernova remnant due to the formation and evolution of a confined bubble.
We study the production of massive gauge bosons during inflation from the axion-type coupling to the inflaton and the corresponding oscillatory features in the primordial non-Gaussianity. In a window in which both the gauge boson mass and the chemical potential are large, the signal is potentially reachable by near-future large scale structure probes. This scenario covers a new region in oscillation frequency which is not populated by previously known cosmological collider models. We also demonstrate how to properly include the exponential factor and discuss the subtleties in obtaining power dependence of the gauge boson mass in the signal estimate.
We look for oscillating signals in the primordial bispectrum from new physics heavy particles which are visibly large for next generation large scale structures (LSS) survey. We show that in ordinary inflation scenarios where a slow-rolling inflaton generates density fluctuations and with no breaking of scale invariance or spacetime symmetry, there exist no naturally large signals unless the rolling inflaton generates a parity-odd chemical potential for the heavy particles. We estimate the accessibility of this signal through observations. While current CMB data are already sensitive in the most optimistic scenario, future probes, including LSS survey and 21 cm observation, can cover interesting regions of the model space.
We study early and late time signatures of both QCD axion strings and hyperlight axion strings (axiverse strings). We focus on charge deposition onto axion strings from electromagnetic fields and subsequent novel neutralizing mechanisms due to bound state formation. While early universe signatures appear unlikely, there are a plethora of late time signatures. Axion strings passing through galaxies obtain a huge charge density, which is neutralized by a dense plasma of bound state Standard Model particles forming a one dimensional atom. The charged wave packets on the string, as well as the dense plasma outside, travel at nearly the speed of light along the string. These packets of high energy plasma collide with a center of mass energy of up to $10^{9}$ GeV. These collisions can have luminosities up to seven orders of magnitude larger than the solar luminosity, and last for thousands of years, making them visible at radio telescopes even when they occur cosmologically far away. The new observables are complementary to the CMB observables for hyperlight axion strings that have been recently proposed, and are sensitive to a similar motivated parameter range.
The quantum fluctuations of the Higgs field during inflation could be a source of primordial density perturbations through Higgs-dependent inflaton decay. By measuring primordial non-Gaussianities, this so-called Higgs-modulated reheating scenario provides us a unique chance to probe Higgs interactions at extremely high energy scale, which we call the Cosmological Higgs Collider (CHC). We realize CHC in a simple scenario where the inflaton decays into Higgs-portal scalars, taking account of the decay of the Higgs fluctuation amplitude after inflation. We also calculate the CHC signals of Standard Model particles, namely their imprints in the squeezed bispectrum, which can be naturally large. The concept of CHC can be straightforwardly generalized to cosmological isocurvature colliders with other types of isocurvature perturbations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا