Do you want to publish a course? Click here

A Cosmological Higgs Collider

123   0   0.0 ( 0 )
 Added by Zhong-Zhi Xianyu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The quantum fluctuations of the Higgs field during inflation could be a source of primordial density perturbations through Higgs-dependent inflaton decay. By measuring primordial non-Gaussianities, this so-called Higgs-modulated reheating scenario provides us a unique chance to probe Higgs interactions at extremely high energy scale, which we call the Cosmological Higgs Collider (CHC). We realize CHC in a simple scenario where the inflaton decays into Higgs-portal scalars, taking account of the decay of the Higgs fluctuation amplitude after inflation. We also calculate the CHC signals of Standard Model particles, namely their imprints in the squeezed bispectrum, which can be naturally large. The concept of CHC can be straightforwardly generalized to cosmological isocurvature colliders with other types of isocurvature perturbations.



rate research

Read More

We study the imprint of new particles on the primordial cosmological fluctuations. New particles with masses comparable to the Hubble scale produce a distinctive signature on the non-gaussianities. This feature arises in the squeezed limit of the correlation functions of primordial fluctuations. It consists of particular power law, or oscillatory, behavior that contains information about the masses of new particles. There is an angular dependence that gives information about the spin. We also have a relative phase that crucially depends on the quantum mechanical nature of the fluctuations and can be viewed as arising from the interference between two processes. While some of these features were noted before in the context of specific inflationary scenarios, here we give a general description emphasizing the role of symmetries in determining the final result.
We study effects of multiple scalar fields (scalar isocurvatons) with the Hubble scale masses on the inflationary bispectrum in the squeezed limit, particular paying attention to the question how to disentangle mass spectra of such fields. We consider two isocurvatons with almost degenerate masses and the coupling of an inflaton to both isocurvatons as an example. We find that the characteristic feature associated with nearly degenerate masses appears in the oscillating part of the bispectrum, which is dominated by a waveform with a specific wavelength roughly given by an inverse of the mass difference. Such a waveform with a relatively longer wavelength can be easily identified and useful for disentangling almost degenerate mass spectra. This situation is in sharp contrast with the case of collider experiments on earth, where the very precise energy resolution corresponding to the mass difference is required to disentangle almost degenerate mass spectra. Therefore, if future observations could detect this kind of a characteristic feature in bispectrum of the primordial curvature perturbations, it can prove the existence of degenerate multiple particles around the Hubble scale and resolve their mass degeneracies.
We study the production of massive gauge bosons during inflation from the axion-type coupling to the inflaton and the corresponding oscillatory features in the primordial non-Gaussianity. In a window in which both the gauge boson mass and the chemical potential are large, the signal is potentially reachable by near-future large scale structure probes. This scenario covers a new region in oscillation frequency which is not populated by previously known cosmological collider models. We also demonstrate how to properly include the exponential factor and discuss the subtleties in obtaining power dependence of the gauge boson mass in the signal estimate.
270 - Hael Collins , R. Holman , 2014
We develop a method for treating the consistency relations of inflation that includes the full time-evolution of the state. This approach relies only on the symmetries of the inflationary setting, in particular a residual conformal symmetry in the spatial part of the metric, along with general properties which hold for any quantum field theory. As a result, the consistency relations that emerge, which are essentially the Slavnov-Taylor identities associated with this residual conformal symmetry, apply very generally: they are true of the full Greens functions, hold largely independently of the particular inflationary model, and can be used for arbitrary states. We illustrate these techniques by showing the form assumed by the standard consistency relation between the two and three-point functions for the primordial scalar fluctuations when they are in a Bunch-Davies state. But because we have included the full evolution of the state, this approach works for a general initial state as well and does not need to have assumed that inflation began in the Bunch-Davies state.
62 - Evan McDonough 2020
Heavy-ion colliders have revealed the process of fast thermalization. This experimental breakthrough has led to new theoretical tools to study the thermalization process at both weak and strong coupling. We apply this to the reheating epoch of inflationary cosmology, and the formation of a cosmological quark gluon plasma (QGP). We compute the thermalization time of the QGP at reheating, and find it is determined by the energy scale of inflation and the shear viscosity to entropy ratio $eta/s$; or equivalently, the tensor-to-scalar ratio and the strong coupling constant at the epoch of thermalization. Thermalization is achieved near-instantaneously in low-scale inflation and in strongly coupled systems, and takes of order or less than a single e-fold of expansion for weakly-coupled systems or after high-scale inflation. We demonstrate that the predictions of inflation are robust to the physics of thermalization, and find a stochastic background of gravitational waves at frequencies accessible by interferometers, albeit with a small amplitude.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا