No Arabic abstract
In this paper we propose a novel method to establish stability and, in addition, convergence to a consensus state for a class of discrete-time Multi-Agent System (MAS) evolving according to nonlinear heterogeneous local interaction rules which is not based on Lyapunov function arguments. In particular, we focus on a class of discrete-time MASs whose global dynamics can be represented by sub-homogeneous and order-preserving nonlinear maps. This paper directly generalizes results for sub-homogeneous and order-preserving linear maps which are shown to be the counterpart to stochastic matrices thanks to nonlinear Perron-Frobenius theory. We provide sufficient conditions on the structure of local interaction rules among agents to establish convergence to a fixed point and study the consensus problem in this generalized framework as a particular case. Examples to show the effectiveness of the method are provided to corroborate the theoretical analysis.
In this paper, an optimal output consensus problem is studied for discrete-time linear multiagent systems subject to external disturbances. Each agent is assigned with a local cost function which is known only to itself. Distributed protocols are to be designed to guarantee an output consensus for these high-order agents and meanwhile minimize the aggregate cost as the sum of these local costs. To overcome the difficulties brought by high-order dynamics and external disturbances, we develop an embedded design and constructively present a distributed rule to solve this problem. The proposed control includes three terms: an optimal signal generator under a directed information graph, an observer-based compensator to reject these disturbances, and a reference tracking controller for these linear agents. It is shown to solve the formulated problem with some mild assumptions. A numerical example is also provided to illustrate the effectiveness of our proposed distributed control laws.
This paper investigates an optimal consensus problem for a group of uncertain linear multi-agent systems. All agents are allowed to possess parametric uncertainties that range over an arbitrarily large compact set. The goal is to collectively minimize a sum of local costs in a distributed fashion and finally achieve an output consensus on this optimal point using only output information of agents. By adding an optimal signal generator to generate the global optimal point, we convert this problem to several decentralized robust tracking problems. Output feedback integral control is constructively given to achieve an optimal consensus under a mild graph connectivity condition. The efficacy of this control is verified by a numerical example.
In this paper, a distributed learning leader-follower consensus protocol based on Gaussian process regression for a class of nonlinear multi-agent systems with unknown dynamics is designed. We propose a distributed learning approach to predict the residual dynamics for each agent. The stability of the consensus protocol using the data-driven model of the dynamics is shown via Lyapunov analysis. The followers ultimately synchronize to the leader with guaranteed error bounds by applying the proposed control law with a high probability. The effectiveness and the applicability of the developed protocol are demonstrated by simulation examples.
This paper studies synchronization of homogeneous and heterogeneous discrete-time multi-agent systems. A class of linear dynamic protocol design methodology is developed based on localized information exchange with neighbors which does not need any knowledge of the directed network topology and the spectrum of the associated Laplacian matrix. The main contribution of this paper is that the proposed protocols are scale-free and achieve synchronization for arbitrary number of agents.
Discrete abstractions have become a standard approach to assist control synthesis under complex specifications. Most techniques for the construction of discrete abstractions are based on sampling of both the state and time spaces, which may not be able to guarantee safety for continuous-time systems. In this work, we aim at addressing this problem by considering only state-space abstraction. Firstly, we connect the continuous-time concrete system with its discrete (state-space) abstraction with a control interface. Then, a novel stability notion called controlled globally asymptotic/practical stability with respect to a set is proposed. It is shown that every system, under the condition that there exists an admissible control interface such that the augmented system (composed of the concrete system and its abstraction) can be made controlled globally practically stable with respect to the given set, is approximately simulated by its discrete abstraction. The effectiveness of the proposed results is illustrated by a simulation example.