Do you want to publish a course? Click here

Pure Single Photons from Scalable Frequency Multiplexing

282   0   0.0 ( 0 )
 Added by Thomas Parker
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate multiphoton interference using a resource-efficient frequency multiplexing scheme, suitable for quantum information applications that demand multiple indistinguishable and pure single photons. In our source, frequency-correlated photon pairs are generated over a wide range of frequencies by pulsed parametric down conversion. Indistinguishable single photons of a predetermined frequency are prepared using frequency-resolved detection of one photon to control an electro-optic frequency shift applied to its partner. Measured photon statistics show multiplexing increases the probability of delivering a single photon, without a corresponding increase to multiphoton events. Interference of consecutive outputs is used to bound the single-photon purity and demonstrate the non-classical nature of the emitted light.



rate research

Read More

Single-photon sources based on optical parametric processes have been used extensively for quantum information applications due to their flexibility, room-temperature operation and potential for photonic integration. However, the intrinsically probabilistic nature of these sources is a major limitation for realizing large-scale quantum networks. Active feedforward switching of photons from multiple probabilistic sources is a promising approach that can be used to build a deterministic source. However, previous implementations of this approach that utilize spatial and/or temporal multiplexing suffer from rapidly increasing switching losses when scaled to a large number of modes. Here, we break this limitation via frequency multiplexing in which the switching losses remain fixed irrespective of the number of modes. We use the third-order nonlinear process of Bragg scattering four-wave mixing as an efficient ultra-low noise frequency switch and demonstrate multiplexing of three frequency modes. We achieve a record generation rate of $4.6times10^4$ multiplexed photons per second with an ultra-low $g^{2}(0)$ = 0.07, indicating high single-photon purity. Our scalable, all-fiber multiplexing system has a total loss of just 1.3 dB independent of the number of multiplexed modes, such that the 4.8 dB enhancement from multiplexing three frequency modes markedly overcomes switching loss. Our approach offers a highly promising path to creating a deterministic photon source that can be integrated on a chip-based platform.
We propose and experimentally demonstrate a novel approach to a heralded single photon source based on spectral multiplexing (SMUX) and feed-forward-based spectral manipulation of photons created by means of spontaneous parametric down-conversion in a periodically-poled LiNbO3 crystal. As a proof-of-principle, we show that our 3-mode SMUX increases the heralded single-photon rate compared to that of the individual modes without compromising the quality of the emitted single-photons. We project that by adding further modes, our approach can lead to a deterministic SPS.
Photonic qubits constitute a leading platform to disruptive quantum technologies due to their unique low-noise properties. The cost of the photonic approach is the non-deterministic nature of many of the processes, including single-photon generation, which arises from parametric sources and negligible interaction between photons. Active temporal multiplexing - repeating a generation process in time and rerouting to single modes using an optical switching network - is a promising approach to overcome this challenge and will likely be essential for large-scale applications with greatly reduced resource complexity and system sizes. Requirements include the precise synchronization of a system of low-loss switches, delay lines, fast photon detectors, and feed-forward. Here we demonstrate temporal multiplexing of 8 bins from a double-passed heralded photon source and observe an increase in the heralding and heralded photon rates. This system points the way to harnessing temporal multiplexing in quantum technologies, from single-photon sources to large-scale computation.
We demonstrate and evaluate an on-demand source of single itinerant microwave photons. Photons are generated using a highly coherent, fixed-frequency qubit-cavity system, and a protocol where the microwave control field is far detuned from the photon emission frequency. By using a Josephson parametric amplifier (JPA), we perform efficient single-quadrature detection of the state emerging from the cavity. We characterize the imperfections of the photon generation and detection, including detection inefficiency and state infidelity caused by measurement backaction over a range of JPA gains from 17 to 33 dB. We observe that both detection efficiency and undesirable backaction increase with JPA gain. We find that the density matrix has its maximum single photon component $rho_{11} = 0.36 pm 0.01$ at 29 dB JPA gain. At this gain, backaction of the JPA creates cavity photon number fluctuations that we model as a thermal distribution with an average photon number $bar{n} = 0.041 pm 0.003$.
Generation and manipulation of the quantum state of a single photon is at the heart of many quantum information protocols. There has been growing interest in using phase modulators as quantum optics devices that preserve coherence. In this Letter, we have used an electro-optic phase modulator to shape the state vector of single photons emitted by a quantum dot to generate new frequency components (modes) and explicitly demonstrate that the phase modulation process agrees with the theoretical prediction at a single photon level. Through two-photon interference measurements we show that for an output consisting of three modes (the original mode and two sidebands), the indistinguishability of the mode engineered photon, measured through the secondorder intensity correlation (g2(0)) is preserved. This work demonstrates a robust means to generate a photonic qubit or more complex state (e.g., a qutrit) for quantum communication applications by encoding information in the sidebands without the loss of coherence.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا