Do you want to publish a course? Click here

Generation and efficient measurement of single photons from fixed frequency superconducting qubits

74   0   0.0 ( 0 )
 Added by William Kindel
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate and evaluate an on-demand source of single itinerant microwave photons. Photons are generated using a highly coherent, fixed-frequency qubit-cavity system, and a protocol where the microwave control field is far detuned from the photon emission frequency. By using a Josephson parametric amplifier (JPA), we perform efficient single-quadrature detection of the state emerging from the cavity. We characterize the imperfections of the photon generation and detection, including detection inefficiency and state infidelity caused by measurement backaction over a range of JPA gains from 17 to 33 dB. We observe that both detection efficiency and undesirable backaction increase with JPA gain. We find that the density matrix has its maximum single photon component $rho_{11} = 0.36 pm 0.01$ at 29 dB JPA gain. At this gain, backaction of the JPA creates cavity photon number fluctuations that we model as a thermal distribution with an average photon number $bar{n} = 0.041 pm 0.003$.

rate research

Read More

Improving coherence times of quantum bits is a fundamental challenge in the field of quantum computing. With long-lived qubits it becomes, however, inefficient to wait until the qubits have relaxed to their ground state after completion of an experiment. Moreover, for error-correction schemes it is import to rapidly re-initialize ancilla parity-check qubits. We present a simple pulsed qubit reset protocol based on a two-pulse sequence. A first pulse transfers the excited state population to a higher excited qubit state and a second pulse into a lossy environment provided by a low-Q transmission line resonator, which is also used for qubit readout. We show that the remaining excited state population can be suppressed to $2.2pm0.8%$ and utilize the pulsed reset protocol to carry out experiments at enhanced rates.
The development of noisy intermediate-scale quantum (NISQ) devices has extended the scope of executable quantum circuits with high-fidelity single- and two-qubit gates. Equipping NISQ devices with three-qubit gates will enable the realization of more complex quantum algorithms and efficient quantum error correction protocols with reduced circuit depth. Several three-qubit gates have been implemented for superconducting qubits, but their use in gate synthesis has been limited due to their low fidelity. Here, using fixed-frequency superconducting qubits, we demonstrate a high-fidelity iToffoli gate based on two-qubit interactions, the so-called cross-resonance effect. As with the Toffoli gate, this three-qubit gate can be used to perform universal quantum computation. The iToffoli gate is implemented by simultaneously applying microwave pulses to a linear chain of three qubits, revealing a process fidelity as high as 98.26(2)%. Moreover, we numerically show that our gate scheme can produce additional three-qubit gates which provide more efficient gate synthesis than the Toffoli and Toffoli gates. Our work not only brings a high-fidelity iToffoli gate to current superconducting quantum processors but also opens a pathway for developing multi-qubit gates based on two-qubit interactions.
Generation and manipulation of the quantum state of a single photon is at the heart of many quantum information protocols. There has been growing interest in using phase modulators as quantum optics devices that preserve coherence. In this Letter, we have used an electro-optic phase modulator to shape the state vector of single photons emitted by a quantum dot to generate new frequency components (modes) and explicitly demonstrate that the phase modulation process agrees with the theoretical prediction at a single photon level. Through two-photon interference measurements we show that for an output consisting of three modes (the original mode and two sidebands), the indistinguishability of the mode engineered photon, measured through the secondorder intensity correlation (g2(0)) is preserved. This work demonstrates a robust means to generate a photonic qubit or more complex state (e.g., a qutrit) for quantum communication applications by encoding information in the sidebands without the loss of coherence.
We demonstrate an all-microwave two-qubit gate on superconducting qubits which are fixed in frequency at optimal bias points. The gate requires no additional subcircuitry and is tunable via the amplitude of microwave irradiation on one qubit at the transition frequency of the other. We use the gate to generate entangled states with a maximal extracted concurrence of 0.88 and quantum process tomography reveals a gate fidelity of 81%.
We propose an efficient light-matter interface at optical frequencies between a single photon and a superconducting qubit. The desired interface is based on a hybrid architecture composed of an organic molecule embedded inside an optical waveguide and electrically coupled to a superconducting qubit placed near the outside surface of the waveguide. We show that high fidelity, photon-mediated, entanglement between distant superconducting qubits can be achieved with incident pulses at the single photon level. Such a low light level is highly desirable for achieving a coherent optical interface with superconducting qubit, since it minimizes decoherence arising from the absorption of light.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا