No Arabic abstract
Following up on recent calculations, we investigate the leading- and next-to-leading order semiclassical approximation to the virial coefficients of a two-species fermion system with a contact interaction. Using the analytic result for the second-order virial coefficient as a renormalization condition, we derive expressions for up to the seventh-order virial coefficient $Delta b_7$. Our results at leading order, though approximate, furnish simple analytic formulas that relate $Delta b_n$ to $Delta b_2$ for arbitrary dimension, providing a glimpse into the behavior of the virial expansion across dimensions and coupling strengths. As an application, we calculate the pressure and Tans contact of the 2D attractive Fermi gas and examine the radius of convergence of the virial expansion as a function of the coupling strength.
Using a leading-order semiclassical approximation, we calculate the third- and fourth-order virial coefficients of nonrelativistic spin-1/2 fermions in a harmonic trapping potential in arbitrary spatial dimensions, and as functions of temperature, trapping frequency and coupling strength. Our simple, analytic results for the interaction-induced changes $Delta b_3$ and $Delta b_4$ agree qualitatively, and in some regimes quantitatively, with previous numerical calculations for the unitary limit of three-dimensional Fermi gases.
We report on recent progress on the splitting functions for the evolution of parton distributions and related quantities, the (lightlike) cusp anomalous dimensions, in perturbative QCD. New results are presented for the four-loop (next-to-next-to-next-to-leading order, N^3LO) contributions to the flavour-singlet splitting functions and the gluon cusp anomalous dimension. We present first results, the moments N=2 and N=3, for the five-loop (N^4LO) non-singlet splitting functions.
Based on recent developments by the authors a next-to-leading order spin(1)-spin(2) Hamiltonian is derived for the first time. The result is obtained within the canonical formalism of Arnowitt, Deser, and Misner (ADM) utilizing their generalized isotropic coordinates. A comparison with other methods is given.
We determine an approximate expression for the O(alpha_s^3) contribution chi_2 to the kernel of the BFKL equation, which includes all collinear and anticollinear singular contributions. This is derived using recent results on the relation between the GLAP and BFKL kernels (including running-coupling effects to all orders) and on small-x factorization schemes. We present the result in various schemes, relevant both for applications to the BFKL equation and to small-x evolution of parton distributions.
Using a coarse temporal lattice approximation, we calculate the first few terms of the virial expansion of a three-species fermion system with a three-body contact interaction in $d$ spatial dimensions, both in homogeneous space as well as in a harmonic trapping potential of frequency $omega$. Using the three-body problem to renormalize, we report analytic results for the change in the fourth- and fifth-order virial coefficients $Delta b_4$ and $Delta b_5$ as functions of $Delta b_3$. Additionally, we argue that in the $omega to 0$ limit the relationship $b_n^text{T} = n^{-d/2} b_n$ holds between the trapped (T) and homogeneous coefficients for arbitrary temperature and coupling strength (not merely in scale-invariant regimes). Finally, we point out an exact, universal (coupling- and frequency-independent) relationship between $Delta b_3^text{T}$ in 1D with three-body forces and $Delta b_2^text{T}$ in 2D with two-body forces.