We analyze algebraic structure of a relativistic semi-classical Wigner function of particles with spin 1/2 and show that it consistently includes information about the spin density matrix both in two-dimensional spin and four-dimensional spinor spaces. This result is subsequently used to explore various forms of equilibrium functions that differ by specific incorporation of spin chemical potential. We argue that a scalar spin chemical potential should be momentum dependent, while its tensor form may be a function of space-time coordinates only. This allows for the use of the tensor form in local thermodynamic relations. We furthermore show how scalar and tensor forms can be linked to each other.
Recently advocated expressions for the phase-space dependent spin-1/2 density matrices of particles and antiparticles are analyzed in detail and reduced to the forms linear in the Dirac spin operator. This allows for a natural determination of the spin polarization vectors of particles and antiparticles by the trace of products of the spin density matrices and the Pauli matrices. We demonstrate that the total spin polarization vector obtained in this way agrees with the Pauli-Lubanski four-vector, constructed from an appropriately chosen spin tensor and boosted to the particle rest frame. We further show that several forms of the spin tensor used in the literature give the same Pauli-Lubanski four-vector.
The formulation of relativistic hydrodynamics for massive particles with spin 1/2 is shortly reviewed. The proposed framework is based on the Wigner function treated in a semi-classical approximation or, alternatively, on a classical treatment of spin 1/2. Several theoretical issues regarding the choice of the energy-momentum and spin tensors used to construct the hydrodynamic framework with spin are discussed in parallel.
A new approach to the two-body problem based on the extension of the $SL(2,C)$ group to the $Sp(4,C)$ one is developed. The wave equation with the Lorentz-scalar and Lorentz-vector potential interactions for the system of one spin-1/2 and one spin-0 particle with unequal masses is constructed.
A newly proposed framework of perfect-fluid relativistic hydrodynamics for particles with spin 1/2 is briefly reviewed. The hydrodynamic equations follow entirely from the conservation laws for energy, momentum, and angular momentum. The incorporation of the angular-momentum conservation requires that the spin polarization tensor is introduced. It plays a role of a Lagrange multiplier conjugated to the spin tensor. The space-time evolution of the spin polarization tensor depends on the specific form chosen for the spin tensor.
The structure of few-fermion systems having $1/2$ spin-isospin symmetry is studied using potential models. The strength and range of the two-body potentials are fixed to describe low energy observables in the angular momentum $L=0$ state and spin $S=0,1$ channels of the two-body system. Successively the strength of the potentials are varied in order to explore energy regions in which the two-body scattering lengths are close to the unitary limit. This study is motivated by the fact that in the nuclear system the singlet and triplet scattering lengths are both large with respect to the range of the interaction. Accordingly we expect evidence of universal behavior in the three- and four-nucleon systems that can be observed from the study of correlations between observables. In particular we concentrate in the behavior of the first excited state of the three-nucleon system as the system moves away from the unitary limit. We also analyze the dependence on the range of the three-body force of some low-energy observables in the three- and four-nucleon systems.
Wojciech Florkowski
,Avdhesh Kumar
,Radoslaw Ryblewski
.
(2019)
.
"Spin chemical potential for relativistic particles with spin 1/2"
.
Wojciech Florkowski
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا