Do you want to publish a course? Click here

Relativistic wave equation for one spin-1/2 and one spin-0 particle

130   0   0.0 ( 0 )
 Added by Dmitriy Kulikov
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

A new approach to the two-body problem based on the extension of the $SL(2,C)$ group to the $Sp(4,C)$ one is developed. The wave equation with the Lorentz-scalar and Lorentz-vector potential interactions for the system of one spin-1/2 and one spin-0 particle with unequal masses is constructed.



rate research

Read More

We study the conditions under which a non-standard Wigner class concerning discrete symmetries may arise for massive spin one-half states. The mass dimension one fermionic states are shown textcolor{red}{to} constitute explicit examples. We also show how to conciliate these states with the current criticism due to the Lee and Wick, and Weinberg formulation.
183 - K. Wang , Y.F. Zhang , Q. Wang 2017
Quantum speed limits of relativistic charged spin-0 and spin-1 bosons in the background of a homogeneous magnetic field are studied on both commutative and oncommutative planes. We show that, on the commutative plane, the average speeds of wave packets along the radial direction during the interval in which a quantum state evolving from an initial state to the orthogonal final one can not exceed the speed of light, regardless of the intensities of the magnetic field. However, due to the noncommutativity, the average speeds of the wave packets on noncommutative plane will exceed the speed of light in vacuum provided the intensity of the magnetic field is strong enough. It is a clear signature of violating Lorentz invariance in quantum mechanics region.
We analyze algebraic structure of a relativistic semi-classical Wigner function of particles with spin 1/2 and show that it consistently includes information about the spin density matrix both in two-dimensional spin and four-dimensional spinor spaces. This result is subsequently used to explore various forms of equilibrium functions that differ by specific incorporation of spin chemical potential. We argue that a scalar spin chemical potential should be momentum dependent, while its tensor form may be a function of space-time coordinates only. This allows for the use of the tensor form in local thermodynamic relations. We furthermore show how scalar and tensor forms can be linked to each other.
Fluid of spin-1/2 fermions is represented by a complex scalar field and a four-vector field coupled both to the scalar and the Dirac fields. We present the underlying action and show that the resulting equations of motion are identical to the (hydrodynamic) Euler equations in the presence of Coriolis force. As a consequence of the gauge invariances of this action we established the quantum kinetic equation which takes account of noninertial properties of the fluid in the presence of electromagnetic fields. The equations of the field components of Wigner function in Clifford algebra basis are employed to construct new semiclassical covariant kinetic equations of the vector and axial-vector field components for massless as well as massive fermions. Nonrelativistic limit of the chiral kinetic equation is studied and shown that it generates a novel three-dimensional transport theory which does not depend on spatial variables explicitly and possesses a Coriolis force term. We demonstrated that the three-dimensional chiral transport equations are consistent with the chiral anomaly. For massive fermions the three-dimensional kinetic transport theory generated by the new covariant kinetic equations is established in small mass limit. It possesses the Coriolis force and the massless limit can be obtained directly.
Recently advocated expressions for the phase-space dependent spin-1/2 density matrices of particles and antiparticles are analyzed in detail and reduced to the forms linear in the Dirac spin operator. This allows for a natural determination of the spin polarization vectors of particles and antiparticles by the trace of products of the spin density matrices and the Pauli matrices. We demonstrate that the total spin polarization vector obtained in this way agrees with the Pauli-Lubanski four-vector, constructed from an appropriately chosen spin tensor and boosted to the particle rest frame. We further show that several forms of the spin tensor used in the literature give the same Pauli-Lubanski four-vector.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا