No Arabic abstract
Image-text matching tasks have recently attracted a lot of attention in the computer vision field. The key point of this cross-domain problem is how to accurately measure the similarity between the visual and the textual contents, which demands a fine understanding of both modalities. In this paper, we propose a novel position focused attention network (PFAN) to investigate the relation between the visual and the textual views. In this work, we integrate the object position clue to enhance the visual-text joint-embedding learning. We first split the images into blocks, by which we infer the relative position of region in the image. Then, an attention mechanism is proposed to model the relations between the image region and blocks and generate the valuable position feature, which will be further utilized to enhance the region expression and model a more reliable relationship between the visual image and the textual sentence. Experiments on the popular datasets Flickr30K and MS-COCO show the effectiveness of the proposed method. Besides the public datasets, we also conduct experiments on our collected practical large-scale news dataset (Tencent-News) to validate the practical application value of proposed method. As far as we know, this is the first attempt to test the performance on the practical application. Our method achieves the state-of-art performance on all of these three datasets.
Exploring fine-grained relationship between entities(e.g. objects in image or words in sentence) has great contribution to understand multimedia content precisely. Previous attention mechanism employed in image-text matching either takes multiple self attention steps to gather correspondences or uses image objects (or words) as context to infer image-text similarity. However, they only take advantage of semantic information without considering that objects relative position also contributes to image understanding. To this end, we introduce a novel position-aware relation module to model both the semantic and spatial relationship simultaneously for image-text matching in this paper. Given an image, our method utilizes the location of different objects to capture spatial relationship innovatively. With the combination of semantic and spatial relationship, its easier to understand the content of different modalities (images and sentences) and capture fine-grained latent correspondences of image-text pairs. Besides, we employ a two-step aggregated relation module to capture interpretable alignment of image-text pairs. The first step, we call it intra-modal relation mechanism, in which we computes responses between different objects in an image or different words in a sentence separately; The second step, we call it inter-modal relation mechanism, in which the query plays a role of textual context to refine the relationship among object proposals in an image. In this way, our position-aware aggregated relation network (ParNet) not only knows which entities are relevant by attending on different objects (words) adaptively, but also adjust the inter-modal correspondence according to the latent alignments according to querys content. Our approach achieves the state-of-the-art results on MS-COCO dataset.
Learning semantic correspondence between image and text is significant as it bridges the semantic gap between vision and language. The key challenge is to accurately find and correlate shared semantics in image and text. Most existing methods achieve this goal by representing the shared semantic as a weighted combination of all the fragments (image regions or text words), where fragments relevant to the shared semantic obtain more attention, otherwise less. However, despite relevant ones contribute more to the shared semantic, irrelevant ones will more or less disturb it, and thus will lead to semantic misalignment in the correlation phase. To address this issue, we present a novel Bidirectional Focal Attention Network (BFAN), which not only allows to attend to relevant fragments but also diverts all the attention into these relevant fragments to concentrate on them. The main difference with existing works is they mostly focus on learning attention weight while our BFAN focus on eliminating irrelevant fragments from the shared semantic. The focal attention is achieved by pre-assigning attention based on inter-modality relation, identifying relevant fragments based on intra-modality relation and reassigning attention. Furthermore, the focal attention is jointly applied in both image-to-text and text-to-image directions, which enables to avoid preference to long text or complex image. Experiments show our simple but effective framework significantly outperforms state-of-the-art, with relative Recall@1 gains of 2.2% on both Flicr30K and MSCOCO benchmarks.
Medical code assignment, which predicts medical codes from clinical texts, is a fundamental task of intelligent medical information systems. The emergence of deep models in natural language processing has boosted the development of automatic assignment methods. However, recent advanced neural architectures with flat convolutions or multi-channel feature concatenation ignore the sequential causal constraint within a text sequence and may not learn meaningful clinical text representations, especially for lengthy clinical notes with long-term sequential dependency. This paper proposes a Dilated Convolutional Attention Network (DCAN), integrating dilated convolutions, residual connections, and label attention, for medical code assignment. It adopts dilated convolutions to capture complex medical patterns with a receptive field which increases exponentially with dilation size. Experiments on a real-world clinical dataset empirically show that our model improves the state of the art.
Image-text matching has received growing interest since it bridges vision and language. The key challenge lies in how to learn correspondence between image and text. Existing works learn coarse correspondence based on object co-occurrence statistics, while failing to learn fine-grained phrase correspondence. In this paper, we present a novel Graph Structured Matching Network (GSMN) to learn fine-grained correspondence. The GSMN explicitly models object, relation and attribute as a structured phrase, which not only allows to learn correspondence of object, relation and attribute separately, but also benefits to learn fine-grained correspondence of structured phrase. This is achieved by node-level matching and structure-level matching. The node-level matching associates each node with its relevant nodes from another modality, where the node can be object, relation or attribute. The associated nodes then jointly infer fine-grained correspondence by fusing neighborhood associations at structure-level matching. Comprehensive experiments show that GSMN outperforms state-of-the-art methods on benchmarks, with relative Recall@1 improvements of nearly 7% and 2% on Flickr30K and MSCOCO, respectively. Code will be released at: https://github.com/CrossmodalGroup/GSMN.
Image-text matching plays a central role in bridging the semantic gap between vision and language. The key point to achieve precise visual-semantic alignment lies in capturing the fine-grained cross-modal correspondence between image and text. Most previous methods rely on single-step reasoning to discover the visual-semantic interactions, which lacks the ability of exploiting the multi-level information to locate the hierarchical fine-grained relevance. Different from them, in this work, we propose a step-wise hierarchical alignment network (SHAN) that decomposes image-text matching into multi-step cross-modal reasoning process. Specifically, we first achieve local-to-local alignment at fragment level, following by performing global-to-local and global-to-global alignment at context level sequentially. This progressive alignment strategy supplies our model with more complementary and sufficient semantic clues to understand the hierarchical correlations between image and text. The experimental results on two benchmark datasets demonstrate the superiority of our proposed method.