Do you want to publish a course? Click here

Enhanced superconductivity by Na doping in SnAs-based layered compound Na$_{1+x}$Sn$_{2-x}$As$_2$

99   0   0.0 ( 0 )
 Added by Yosuke Goto
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Superconducting transition temperature (Tc) reported in SnAs-based layered compound NaSn$_2$As$_2$ varies from 1.2 to 1.6 K, implying that its superconductivity is critically sensitive to non-stoichiometry. Here, we demonstrate that Na-doping on the Sn site (Na$_{1+x}$Sn$_{2-x}$As$_2$) is effective in enhancing superconductivity, leading to Tc = 2.1 K for x = 0.4. First-principles calculation indicates that such a doping, or Na$_{rm Sn}$ antisite defects, is energetically favored over other cation vacancies. Our results pave the way for increasing Tc of layered tin pnictide superconductors.



rate research

Read More

We report inelastic x-ray scattering measurements of the in-plane polarized transverse acoustic phonon mode propagating along $qparallel$[100] in various hole-doped compounds belonging to the 122 family of iron-based superconductors. The slope of the dispersion of this phonon mode is proportional to the square root of the shear modulus $C_{66}$ in the $q rightarrow 0$ limit and, hence, sensitive to the tetragonal-to-orthorhombic structural phase transition occurring in these compounds. In contrast to a recent report for Ba(Fe$_{0.94}$Co$_{0.06}$)$_2$As$_2$ [F. Weber et al., Phys. Rev. B 98, 014516 (2018)], we find qualitative agreement between values of $C_{66}$ deduced from our experiments and those derived from measurements of the Youngs modulus in Ba$_{1-x}$(K,Na)$_x$Fe$_2$As$_2$ at optimal doping. These results provide an upper limit of about 50 {AA} for the nematic correlation length for the optimally hole-doped compounds. Furthermore, we also studied compounds at lower doping levels exhibiting the orthorhombic magnetic phase, where $C_{66}$ is not accessible by volume probes, as well as the C4 tetragonal magnetic phase.investigated
352 - J. Q. Ma , X. G. Luo , P. Cheng 2014
We measured the in-plane resistivity anisotropy in the underdoped Ca$_{1-x}$Na$_x$Fe$_2$As$_2$ single crystals. The anisotropy (indicated by $rho_{rm b} - rho_{rm a}$) appears below a temperature well above magnetic transition temperature $T_{rm N}$, being positive ($rho_{rm b} - rho_{rm a} > 0$) as $xleq$ 0.14. With increasing the doping level to $x$ = 0.19, an intersection between $rho_{rm b}$ and $rho_{rm a}$ is observed upon cooling, with $rho_{rm b} - rho_{rm a} < 0$ at low-temperature deep inside a magnetically ordered state, while $rho_{rm b} - rho_{rm a}> 0$ at high temperature. Subsequently, further increase of hole concentration leads to a negative anisotropy $rho_{rm b} - rho_{rm a} < 0$ in the whole temperature range. These results manifest that the anisotropic behavior of resistivity in the magnetically ordered state depends strongly on the competition of the contributions from different mechanisms, and the competition between the two contributions results in a complicated evolution of the anisotropy of in-plane resistivity with doping level.
The solid solution of antimonide-oxides Ba1-xKxTi2Sb2O (0 < x < 1) has been synthesized by solid-state reactions and characterized by X-ray powder diffraction (CeCr2Si2C-type structure; P4/mmm, Z = 1). The crystal structure consists of Ti2Sb2O-layers that are stacked with layers of barium atoms along the c-axis. BaTi2Sb2O is a known superconductor with a critical temperature (Tc) of 1.2 K. Substitution of barium through potassium raises Tc up to 6.1 K at 12 % potassium, while no superconductivity emerges with concentrations higher than 20 %. Anomalies in electrical transport and magnetic susceptibility indicate charge density wave (CDW) instabilities. The CDW transition temperatures (Ta) decrease from 50 K in the parent compound to 28 K at 10 % potassium substitution. No CDW transition was detected at higher concentrations, and no evidence for a reduction of the lattice symmetry below Ta was found. The lattice parameters vary linearly while the unit cell volume increases with higher potassium concentrations. The phase diagrams Tc(x) and Ta(x) of Ba1-xKxTi2Sb2O are remarkably similar to the known series Ba1-xNaxTi2Sb2O (0 < x < 0.33) in spite of the reverse volume effect. From this we conclude that the charge and not the volume determines the phase diagrams of these superconducting antimony oxides.
162 - L. Shan , H. Gao , Y.G. Shi 2003
The single electron tunneling spectroscopy on superconductor Na$_{x}$CoO$_2$$cdot$ yH$_2$O and its starting compound Na$_{x}$CoO$_2$ has been studied with point-contact method. The spectra of Na$_{x}$CoO$_2$ have two types of distinct shapes at different random locations, this is attributed to the non-uniformly distributed sodium escaped from the inner part of the sample. While all the measured spectra of the superconducting samples Na$_{x}$CoO$_2$$cdot$ yH$_2$O have a good spatial reproducibility, and show a remarkable zero bias conductance depression appearing below an onset temperature which associates very well with the resistance upturn at around 45 K. The latter behavior resembles in some way the pseudogap feature in high-T$_c$ cuprate uperconductors.
The effect of hydrostatic pressure and partial Na substitution on the normal-state properties and the superconducting transition temperature ($T_c$) of K$_{1-x}$Na$_x$Fe$_2$As$_2$ single crystals were investigated. It was found that a partial Na substitution leads to a deviation from the standard $T^2$ Fermi-liquid behavior in the temperature dependence of the normal-state resistivity. It was demonstrated that non-Fermi liquid like behavior of the resistivity for K$_{1-x}$Na$_{x}$Fe$_2$As$_2$ and some KFe$_2$As$_2$ samples can be explained by disorder effect in the multiband system with rather different quasiparticle effective masses. Concerning the superconducting state our data support the presence of a shallow minimum around 2 GPa in the pressure dependence of $T_c$ for stoichiometric KFe$_2$As$_2$. The analysis of $T_c$ in the K$_{1-x}$Na$_{x}$Fe$_2$As$_2$ at pressures below 1.5 GPa showed, that the reduction of $T_c$ with Na substitution follows the Abrikosov-Gorkov law with the critical temperature $T_{c0}$ of the clean system (without pair-breaking) which linearly depends on the pressure. Our observations, also, suggest that $T_c$ of K$_{1-x}$Na$_x$Fe$_2$As$_2$ is nearly independent of the lattice compression produced by the Na substitution. Further, we theoretically analyzed the behavior of the band structure under pressure within the generalized gradient approximation (GGA). A qualitative agreement between the calculated and the recently in de Haas-van Alphen experiments [T. Terashima et al., Phys.Rev.B89, 134520(2014)] measured pressure dependencies of the Fermi-surface cross-sections has been found. These calculations, also, indicate that the observed minimum around 2~GPa in the pressure dependence of $T_c$ may occur without a change of the pairing symmetry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا