No Arabic abstract
It is commonly accepted that a collection of pumped atoms without a resonator, which provides feedback, cannot lase. We show that intermodal coupling via active atoms pulls the frequencies of the free-space modes towards the transition frequency of the atoms. Although at a low pump rate mode phases randomly fluctuate, phase realizations at which interference of pulled modes is constructive emerge. This results in an increase of stimulated emission into such realizations and makes their lifetime longer. Thus, mode pulling provides positive feedback. When the pump rate exceeds a certain threshold, the lifetime of one of the realizations diverges, and radiation becomes coherent.
Optomechanical structures are well suited to study photon-phonon interactions, and they also turn out to be potential building blocks for phononic circuits and quantum computing. In phononic circuits, in which information is carried and processed by phonons, optomechanical structures could be used as interfaces to photons and electrons thanks to their excellent coupling efficiency. Among the components required for phononic circuits, such structures could be used to create coherent phonon sources and detectors. Complex functions other than emission or detection remain challenging and addressing a single structure in a full network proves a formidable challenge. Here, we propose and demonstrate a way to modulate the coherent emission from optomechanical crystals by external optical pumping, effectively creating a phonon switch working at ambient conditions of pressure and temperature and the working speed of which (5 MHz) is only limited by the mechanical motion of the optomechanical structure. We additionally demonstrate two other switching schemes: harmonic switching in which the mechanical mode remains active but different harmonics of the optical force are used, and switching to- and from the chaotic regime. Furthermore, the method presented here allows to select any single structure without affecting its surroundings, which is an important step towards freely controllable networks of optomechanical phonon emitters.
We demonstrated the operation of a high finesse optical cavity without utilizing an active feedback system to stabilize the resonance. The effective finesse, which is a finesse including the overall system performance, of the cavity was measured to be $394,000 pm 10,000$, and the laser power stored in the cavity was $2.52 pm 0.13$ kW, which is approximately 187,000 times greater than the incident power to the cavity. The stored power was stabilized with a fluctuation of $1.7 %$, and we confirmed continuous cavity operation for more than two hours. This result has the potential to trigger an innovative evolution for applications that use optical resonant cavities such as compact photon sources with laser-Compton scattering or cavity enhanced absorption spectroscopy.
Light-matter coupling in excitonic materials has been the subject of intense investigation due to emergence of new excitonic materials. Two-dimensional layered hybrid organic/inorganic perovskites (2D HOIPs) support strongly bound excitons at room-temperatures with some of the highest oscillator strengths and electric loss tangents among the known excitonic materials. Here, we report strong light-matter coupling in Ruddlesden-Popper phase 2D-HOIPs crystals without the necessity of an external cavity. We report concurrent occurrence of multiple-orders of hybrid light-matter states via both reflectance and luminescence spectroscopy in thick (> 100 nm) crystals and near-unity absorption in thin (< 20 nm) crystals. We observe resonances with quality factors > 250 in hybridized exciton-polaritons and identify a linear correlation between exciton-polariton mode splitting and extinction coefficient of the various 2D-HOIPs. Our work opens the door to studying polariton dynamics in self-hybridized and open cavity systems with broad applications in optoelectronics and photochemistry.
We demonstrate an individual single-walled carbon nanotube light emitter integrated onto a microcavity and a waveguide operating in the telecom wavelength regime. Light emission from the carbon nanotube is enhanced at the cavity resonance and is efficiently extracted from the waveguide facet. We have transferred carbon nanotubes to a nanobeam cavity with a dry process, ensuring that an individual carbon nanotube is used. The guided light emission from a chirality-identified single carbon nanotube has a narrow linewidth of less than 1.3 nm and an off-resonance rejection of $sim$17 dB. The waveguide-coupled device configuration is compatible with fully integrated on-chip designs and is promising for carbon-nanotube-based photonics.
We achieve the strong coupling regime between an ensemble of phosphorus donor spins in a highly enriched $^{28}$Si crystal and a 3D dielectric resonator. Spins were polarized beyond Boltzmann equilibrium using spin selective optical excitation of the no-phonon bound exciton transition resulting in $N$ = $3.6cdot10^{13}$ unpaired spins in the ensemble. We observed a normal mode splitting of the spin ensemble-cavity polariton resonances of 2$gsqrt{N}$ = 580 kHz (where each spin is coupled with strength $g$) in a cavity with a quality factor of 75,000 ($gamma ll kappa approx$ 60 kHz where $gamma$ and $kappa$ are the spin dephasing and cavity loss rates, respectively). The spin ensemble has a long dephasing time (T$_2^*$ = 9 $mu$s) providing a wide window for viewing the dynamics of the coupled spin ensemble-cavity system. The free induction decay shows up to a dozen collapses and revivals revealing a coherent exchange of excitations between the superradiant state of the spin ensemble and the cavity at the rate $gsqrt{N}$. The ensemble is found to evolve as a single large pseudospin according to the Tavis-Cummings model due to minimal inhomogeneous broadening and uniform spin-cavity coupling. We demonstrate independent control of the total spin and the initial Z-projection of the psuedospin using optical excitation and microwave manipulation respectively. We vary the microwave excitation power to rotate the pseudospin on the Bloch sphere and observe a long delay in the onset of the superradiant emission as the pseudospin approaches full inversion. This delay is accompanied by an abrupt $pi$ phase shift in the peusdospin microwave emission. The scaling of this delay with the initial angle and the sudden phase shift are explained by the Tavis-Cummings model.