No Arabic abstract
The technique of transmission spectroscopy allows us to constrain the chemical composition of the atmospheres of transiting exoplanets. It relies on very high signal-to-noise spectroscopic (or spectrophotometric) observations and is thus most suited for bright exoplanet host stars. In the era of TESS, NGST and PLATO, more and more suitable targets, even for mid-sized telescopes, are discovered. Furthermore, a wealth of archival data is available that could become a basis for long-term monitoring of exo-atmospheres. We analyzed archival HARPS spectroscopic time series of four host stars to transiting bloated gas exoplanets, namely WASP-76b, WASP-127b, WASP-166b and KELT-11b, searching for traces of sodium (sodium doublet), hydrogen (H$alpha$, H$beta$), and lithium (670.8 nm). The archival data sets include spectroscopic time series taken during transits. Comparing in- and out-of-transit spectra we can filter out the stellar lines and investigate the absorption from the planet. Simultaneously, the stellar activity is monitored using the Mg I and Ca I lines. We independently detect sodium in the atmosphere of WASP-76b at a 7-9 $sigma$ level. Furthermore, we report also at 4-8 $sigma$ level of significance the detection of sodium in the atmosphere of WASP-127b, confirming earlier result based on low-resolution spectroscopy. The data show no sodium nor any other atom at high confidence levels for WASP-166b nor KELT-11b, hinting at the presence of thick high clouds.
Aims. We report on ESPRESSO high-resolution transmission spectroscopic observations of two primary transits of the highly-irradiated, ultra-hot Jupiter-size planet WASP-76b. We investigate the presence of several key atomic and molecular features of interest that may reveal the atmospheric properties of the planet. Methods. We extracted two transmission spectra of WASP-76b with R approx 140,000 using a procedure that allowed us to process the full ESPRESSO wavelength range (3800-7880 A) simultaneously. We observed that at a high signal-to-noise ratio, the continuum of ESPRESSO spectra shows wiggles that are likely caused by an interference pattern outside the spectrograph. To search for the planetary features, we visually analysed the extracted transmission spectra and cross-correlated the observations against theoretical spectra of different atomic and molecular species. Results. The following atomic features are detected: Li I, Na I, Mg I, Ca II, Mn I, K I, and Fe I. All are detected with a confidence level between 9.2 sigma (Na I) and 2.8 sigma (Mg I). We did not detect the following species: Ti I, Cr I, Ni I, TiO, VO, and ZrO. We impose the following 1 sigma upper limits on their detectability: 60, 77, 122, 6, 8, and 8 ppm, respectively. Conclusions. We report the detection of Li I on WASP-76b for the first time. In addition, we found the presence of Na I and Fe I as previously reported in the literature. We show that the procedure employed in this work can detect features down to the level of ~ 0.1 % in the transmission spectrum and ~ 10 ppm by means of a cross-correlation method. We discuss the presence of neutral and singly ionised features in the atmosphere of WASP-76b.
We observed the Saturn-mass and Jupiter-sized exoplanet HAT-P-19b to refine its transit parameters and ephemeris as well as to shed first light on its transmission spectrum. We monitored the host star over one year to quantify its flux variability and to correct the transmission spectrum for a slope caused by starspots. A transit of HAT-P-19b was observed spectroscopically with OSIRIS at the Gran Telescopio Canarias in January 2012. The spectra of the target and the comparison star covered the wavelength range from 5600 to 7600 AA. One high-precision differential light curve was created by integrating the entire spectral flux. This white-light curve was used to derive absolute transit parameters. Furthermore, a set of light curves over wavelength was formed by a flux integration in 41 wavelength channels of 50 AA width. We analyzed these spectral light curves for chromatic variations of transit depth. The transit fit of the combined white-light curve yields a refined value of the planet-to-star radius ratio of 0.1390 pm 0.0012 and an inclination of 88.89 pm 0.32 degrees. After a re-analysis of published data, we refine the orbital period to 4.0087844 pm 0.0000015 days. We obtain a flat transmission spectrum without significant additional absorption at any wavelength or any slope. However, our accuracy is not sufficient to significantly rule out the presence of a pressure-broadened sodium feature. Our photometric monitoring campaign allowed for an estimate of the stellar rotation period of 35.5 pm 2.5 days and an improved age estimate of 5.5^+1.8_-1.3 Gyr by gyrochronology.
Clouds have an important role in the atmospheres of planetary bodies. It is expected that, like all the planetary bodies in our solar system, exoplanet atmospheres will also have substantial cloud coverage, and evidence is mounting for clouds in a number of hot Jupiters. In order to better characterise planetary atmospheres we need to consider the effects these clouds will have on the observed broadband transmission spectra. Here we examine the expected cloud condensate species for hot Jupiter exoplanets and the effects of various grain sizes and distributions on the resultant transmission spectra from the optical to infrared, which can be used as a broad framework when interpreting exoplanet spectra. We note that significant infrared absorption features appear in the computed transmission spectrum, the result of vibrational modes between the key species in each condensate, which can potentially be very constraining. While it may be hard to differentiate between individual condensates in the broad transmission spectra, it may be possible to discern different vibrational bonds, which can distinguish between cloud formation scenarios such as condensate clouds or photochemically generated species. Vibrational mode features are shown to be prominent when the clouds are composed of small sub-micron sized particles and can be associated with an accompanying optical scattering slope. These infrared features have potential implications for future exoplanetary atmosphere studies conducted with JWST, where such vibrational modes distinguishing condensate species can be probed at longer wavelengths.
We report detections of atomic species in the atmosphere of MASCARA-2 b, using the first transit observations obtained with the newly commissioned EXPRES spectrograph. EXPRES is a highly stabilised optical echelle spectrograph, designed to detect stellar reflex motions with amplitudes down to 30 cm/s, and was recently deployed at the Lowell Discovery Telescope. By analysing the transmission spectrum of the ultra-hot Jupiter MASCARA-2 b using the cross-correlation method, we confirm previous detections of Fe I, Fe II and Na I, which likely originate in the upper regions of the inflated atmosphere. In addition, we report significant detections of Mg I and Cr II. The absorption strengths change slightly with time, possibly indicating different temperatures and chemistry in the day-side and night-side terminators. Using the effective stellar line-shape variation induced by the transiting planet, we constrain the projected spin-orbit misalignment of the system to $1.6pm3.1$ degrees, consistent with an aligned orbit. We demonstrate that EXPRES joins a suite of instruments capable of phase-resolved spectroscopy of exoplanet atmospheres.
High-resolution transmission spectroscopy is a method for understanding the chemical and physical properties of upper exoplanetary atmospheres. Due to large absorption cross-sections, resonance lines of atomic sodium D-lines (at 5889.95 $AA$ and 5895.92 $AA$) produce large transmission signals. Our aim is to unveil the physical properties of WASP-17b through an accurate measurement of the sodium absorption in the transmission spectrum. We analyze 37 high-resolution spectra observed during a single transit of WASP-17b with the MIKE instrument on the 6.5 meter Magellan Telescopes. We exclude stellar flaring activity during the observations by analyzing the temporal variations of H$_{alpha}$ and Ca II infra-red triplet (IRT) lines. Then we obtain the excess absorption light curves in wavelength bands of 0.75, 1, 1.5 and 3 $AA$ around the center of each sodium line (i.e., the light curve approach). We model the effects of differential limb-darkening, and the changing planetary radial velocity on the light curves. We also analyze the sodium absorption directly in the transmission spectrum, which is obtained through dividing in-transit by out-of-transit spectra (i.e., the division approach). We then compare our measurements with a radiative transfer atmospheric model. Our analysis results in a tentative detection of exoplanetary sodium: we measure the width and amplitude of the exoplanetary sodium feature to be $sigma_{mathrm{Na}}$ = (0.128 $pm$ 0.078) $AA$ and A$_{mathrm{Na}}$ = (1.7 $pm$ 0.9)% in the excess light curve approach and $sigma_{mathrm{Na}}$ = (0.850 $pm$ 0.034) $AA$ and A$_{mathrm{Na}}$ = (1.3 $pm$ 0.6)% in the division approach. By comparing our measurements with a simple atmospheric model, we retrieve an atmospheric temperature of 1550 $^{+170} _{-200}$ K and radius (at 0.1 bar) of 1.81 $pm$ 0.02 R$_{rm Jup}$ for WASP-17b.