Do you want to publish a course? Click here

Utility-aware and privacy-preserving mobile query services

89   0   0.0 ( 0 )
 Added by M. Emre Gursoy
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Location-based queries enable fundamental services for mobile road network travelers. While the benefits of location-based services (LBS) are numerous, exposure of mobile travelers location information to untrusted LBS providers may lead to privacy breaches. In this paper, we propose StarCloak, a utility-aware and attack-resilient approach to building a privacy-preserving query system for mobile users traveling on road networks. StarCloak has several desirable properties. First, StarCloak supports user-defined k-user anonymity and l-segment indistinguishability, along with user-specified spatial and temporal utility constraints, for utility-aware and personalized location privacy. Second, unlike conventional solutions which are indifferent to underlying road network structure, StarCloak uses the concept of stars and proposes cloaking graphs for effective location cloaking on road networks. Third, StarCloak achieves strong attack-resilience against replay and query injection-based attacks through randomized star selection and pruning. Finally, to enable scalable query processing with high throughput, StarCloak makes cost-aware star selection decisions by considering query evaluation and network communication costs. We evaluate StarCloak on two real-world road network datasets under various privacy and utility constraints. Results show that StarCloak achieves improved query success rate and throughput, reduced anonymization time and network usage, and higher attack-resilience in comparison to XStar, its most relevant competitor.



rate research

Read More

275 - Di Zhuang , J. Morris Chang 2020
In the big data era, more and more cloud-based data-driven applications are developed that leverage individual data to provide certain valuable services (the utilities). On the other hand, since the same set of individual data could be utilized to infer the individuals certain sensitive information, it creates new channels to snoop the individuals privacy. Hence it is of great importance to develop techniques that enable the data owners to release privatized data, that can still be utilized for certain premised intended purpose. Existing data releasing approaches, however, are either privacy-emphasized (no consideration on utility) or utility-driven (no guarantees on privacy). In this work, we propose a two-step perturbation-based utility-aware privacy-preserving data releasing framework. First, certain predefined privacy and utility problems are learned from the public domain data (background knowledge). Later, our approach leverages the learned knowledge to precisely perturb the data owners data into privatized data that can be successfully utilized for certain intended purpose (learning to succeed), without jeopardizing certain predefined privacy (training to fail). Extensive experiments have been conducted on Human Activity Recognition, Census Income and Bank Marketing datasets to demonstrate the effectiveness and practicality of our framework.
Differential privacy (DP) and local differential privacy (LPD) are frameworks to protect sensitive information in data collections. They are both based on obfuscation. In DP the noise is added to the result of queries on the dataset, whereas in LPD the noise is added directly on the individual records, before being collected. The main advantage of LPD with respect to DP is that it does not need to assume a trusted third party. The main disadvantage is that the trade-off between privacy and utility is usually worse than in DP, and typically to retrieve reasonably good statistics from the locally sanitized data it is necessary to have a huge collection of them. In this paper, we focus on the problem of estimating counting queries from collections of noisy answers, and we propose a variant of LDP based on the addition of geometric noise. Our main result is that the geometric noise has a better statistical utility than other LPD mechanisms from the literature.
Local Differential Privacy (LDP) is popularly used in practice for privacy-preserving data collection. Although existing LDP protocols offer high utility for large user populations (100,000 or more users), they perform poorly in scenarios with small user populations (such as those in the cybersecurity domain) and lack perturbation mechanisms that are effective for both ordinal and non-ordinal item sequences while protecting sequence length and content simultaneously. In this paper, we address the small user population problem by introducing the concept of Condensed Local Differential Privacy (CLDP) as a specialization of LDP, and develop a suite of CLDP protocols that offer desirable statistical utility while preserving privacy. Our protocols support different types of client data, ranging from ordinal data types in finite metric spaces (numeric malware infection statistics), to non-ordinal items (O
61 - Zhuotao Liu , Yuan Cao , Min Zhu 2019
Defending against distributed denial of service (DDoS) attacks in the Internet is a fundamental problem. However, recent industrial interviews with over 100 security experts from more than ten industry segments indicate that DDoS problems have not been fully addressed. The reasons are twofold. On one hand, many academic proposals that are provably secure witness little real-world deployment. On the other hand, the operation model for existing DDoS-prevention service providers (e.g., Cloudflare, Akamai) is privacy invasive for large organizations (e.g., government). In this paper, we present Umbrella, a new DDoS defense mechanism enabling Internet Service Providers (ISPs) to offer readily deployable and privacy-preserving DDoS prevention services to their customers. At its core, Umbrella develops a multi-layered defense architecture to defend against a wide spectrum of DDoS attacks. In particular, the flood throttling layer stops amplification-based DDoS attacks; the congestion resolving layer, aiming to prevent sophisticated attacks that cannot be easily filtered, enforces congestion accountability to ensure that legitimate flows are guaranteed to receive their fair shares regardless of attackers strategies; and finally the userspecific layer allows DDoS victims to enforce self-desired traffic control policies that best satisfy their business requirements. Based on Linux implementation, we demonstrate that Umbrella is capable to deal with large scale attacks involving millions of attack flows, meanwhile imposing negligible packet processing overhead. Further, our physical testbed experiments and large scale simulations prove that Umbrella is effective to mitigate various DDoS attacks.
85 - Yang Liu , Zhuo Ma , Ximeng Liu 2019
Recently, Google and other 24 institutions proposed a series of open challenges towards federated learning (FL), which include application expansion and homomorphic encryption (HE). The former aims to expand the applicable machine learning models of FL. The latter focuses on who holds the secret key when applying HE to FL. For the naive HE scheme, the server is set to master the secret key. Such a setting causes a serious problem that if the server does not conduct aggregation before decryption, a chance is left for the server to access the users update. Inspired by the two challenges, we propose FedXGB, a federated extreme gradient boosting (XGBoost) scheme supporting forced aggregation. FedXGB mainly achieves the following two breakthroughs. First, FedXGB involves a new HE based secure aggregation scheme for FL. By combining the advantages of secret sharing and homomorphic encryption, the algorithm can solve the second challenge mentioned above, and is robust to the user dropout. Then, FedXGB extends FL to a new machine learning model by applying the secure aggregation scheme to the classification and regression tree building of XGBoost. Moreover, we conduct a comprehensive theoretical analysis and extensive experiments to evaluate the security, effectiveness, and efficiency of FedXGB. The results indicate that FedXGB achieves less than 1% accuracy loss compared with the original XGBoost, and can provide about 23.9% runtime and 33.3% communication reduction for HE based model update aggregation of FL.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا