Do you want to publish a course? Click here

A Substellar Companion to a Hot Star in K2s Campaign 0 Field

155   0   0.0 ( 0 )
 Added by Shashank Dholakia
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The K2 mission has enabled searches for transits in crowded stellar environments very different from the original Kepler mission field. We describe here the reduction and analysis of time series data from K2s Campaign 0 superstamp, which contains the 150 Myr open cluster M35. We report on the identification of a substellar transiting object orbiting an A star at the periphery of the superstamp. To investigate this transiting source, we performed ground based follow-up observations, including photometry with the Las Cumbres Observatory telescope network and high resolution spectroscopy with Keck/HIRES. We confirm that the host star is a hot, rapidly rotating star, precluding precision radial velocity measurements. We nevertheless present a statistical validation of the planet or brown dwarf candidate using speckle interferometry from the WIYN telescope to rule out false positive stellar eclipsing binary scenarios. Based on parallax and proper motion data from Gaia Data Release 2 (DR2), we conclude that the star is not likely to be a member of M35, but instead is a background star around 100 pc behind the cluster. We present an updated ephemeris to enable future transit observations. We note that this is a rare system as a hot host star with a substellar companion. It has a high potential for future follow-up, including Doppler tomography and mid-infrared secondary transit observations.

rate research

Read More

We find a new substellar companion to the Pleiades member star, Pleiades HII 3441, using the Subaru telescope with adaptive optics. The discovery is made as part of the high-contrast imaging survey to search for planetary-mass and substellar companions in the Pleiades and young moving groups. The companion has a projected separation of 0.49 +/- 0.02 (66 +/- 2 AU) and a mass of 68 +/- 5 M_J based on three observations in the J-, H-, and K_S-band. The spectral type is estimated to be M7 (~2700 K), and thus no methane absorption is detected in the H band. Our Pleiades observations result in the detection of two substellar companions including one previously reported among 20 observed Pleiades stars, and indicate that the fraction of substellar companions in the Pleiades is about 10.0 +26.1/-8.8 %. This is consistent with multiplicity studies of both the Pleiades stars and other open clusters.
We report the discovery of a tight substellar companion to the young solar analog PZ Tel, a member of the Beta Pictoris moving group observed with high contrast adaptive optics imaging as part of the Gemini NICI Planet-Finding Campaign. The companion was detected at a projected separation of 16.4 +/- 1.0 AU (0.33 +/- 0.01) in April 2009. Second-epoch observations in May 2010 demonstrate that the companion is physically associated and shows significant orbital motion. Monte Carlo modeling constrains the orbit of PZ Tel B to eccentricities > 0.6. The near-IR colors of PZ Tel B indicate a spectral type of M7+/-2 and thus this object will be a new benchmark companion for studies of ultracool, low-gravity photospheres. Adopting an age of 12 +8 -4 Myr for the system, we estimate a mass of 36 +/- 6 Mjup based on the Lyon/DUSTY evolutionary models. PZ Tel B is one of few young substellar companions directly imaged at orbital separations similar to those of giant planets in our own solar system. Additionally, the primary star PZ Tel A shows a 70 um emission excess, evidence for a significant quantity of circumstellar dust that has not been disrupted by the orbital motion of the companion.
We present the discoveries of KELT-25b (TIC 65412605, TOI-626.01) and KELT-26b (TIC 160708862, TOI-1337.01), two transiting companions orbiting relatively bright, early A-stars. The transit signals were initially detected by the KELT survey, and subsequently confirmed by textit{TESS} photometry. KELT-25b is on a 4.40-day orbit around the V = 9.66 star CD-24 5016 ($T_{rm eff} = 8280^{+440}_{-180}$ K, $M_{star}$ = $2.18^{+0.12}_{-0.11}$ $M_{odot}$), while KELT-26b is on a 3.34-day orbit around the V = 9.95 star HD 134004 ($T_{rm eff}$ =$8640^{+500}_{-240}$ K, $M_{star}$ = $1.93^{+0.14}_{-0.16}$ $M_{odot}$), which is likely an Am star. We have confirmed the sub-stellar nature of both companions through detailed characterization of each system using ground-based and textit{TESS} photometry, radial velocity measurements, Doppler Tomography, and high-resolution imaging. For KELT-25, we determine a companion radius of $R_{rm P}$ = $1.64^{+0.039}_{-0.043}$ $R_{rm J}$, and a 3-sigma upper limit on the companions mass of $sim64~M_{rm J}$. For KELT-26b, we infer a planetary mass and radius of $M_{rm P}$ = $1.41^{+0.43}_{-0.51}$ $M_{rm J}$ and $R_{rm P}$ = $1.940^{+0.060}_{-0.058}$ $R_{rm J}$. From Doppler Tomographic observations, we find KELT-26b to reside in a highly misaligned orbit. This conclusion is weakly corroborated by a subtle asymmetry in the transit light curve from the textit{TESS} data. KELT-25b appears to be in a well-aligned, prograde orbit, and the system is likely a member of a cluster or moving group.
We report the discovery of a wide (135+/-25 AU), unusually blue L5 companion 2MASS J17114559+4028578 to the nearby M4.5 dwarf G 203-50 as a result of a targeted search for common proper motion pairs in the Sloan Digital Sky Survey and the Two Micron All Sky Survey. Adaptive Optics imaging with Subaru indicates that neither component is a nearly equal mass binary with separation > 0.18, and places limits on the existence of additional faint companions. An examination of TiO and CaH features in the primarys spectrum is consistent with solar metallicity and provides no evidence that G 203-50 is metal poor. We estimate an age for the primary of 1-5 Gyr based on activity. Assuming coevality of the companion, its age, gravity and metallicity can be constrained from properties of the primary, making it a suitable benchmark object for the calibration of evolutionary models and for determining the atmospheric properties of peculiar blue L dwarfs. The low total mass (M_tot=0.21+/-0.03 M_sun), intermediate mass ratio (q=0.45+/-0.14), and wide separation of this system demonstrate that the star formation process is capable of forming wide, weakly bound binary systems with low mass and BD components. Based on the sensitivity of our search we find that no more than 2.2% of early-to-mid M dwarfs (9.0 < M_V < 13.0) have wide substellar companions with m > 0.06 M_sun.
We present the discovery of a brown dwarf companion to the debris disk host star HR 2562. This object, discovered with the Gemini Planet Imager (GPI), has a projected separation of 20.3$pm$0.3 au (0.618$pm$0.004) from the star. With the high astrometric precision afforded by GPI, we have confirmed common proper motion of HR 2562B with the star with only a month time baseline between observations to more than $5sigma$. Spectral data in $J$, $H$, and $K$ bands show morphological similarity to L/T transition objects. We assign a spectral type of L7$pm$3 to HR 2562B, and derive a luminosity of $log$(L$_{rm bol}$/L$_{odot}$)=-4.62$pm$0.12, corresponding to a mass of 30$pm$15 M$_{rm Jup}$ from evolutionary models at an estimated age of the system of 300-900 Myr. Although the uncertainty in the age of the host star is significant, the spectra and photometry exhibit several indications of youth for HR 2562B. The source has a position angle consistent with an orbit in the same plane as the debris disk recently resolved with Herschel. Additionally, it appears to be interior to the debris disk. Though the extent of the inner hole is currently too uncertain to place limits on the mass of HR 2562B, future observations of the disk with higher spatial resolution may be able to provide mass constraints. This is the first brown dwarf-mass object found to reside in the inner hole of a debris disk, offering the opportunity to search for evidence of formation above the deuterium burning limit in a circumstellar disk.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا