No Arabic abstract
We study the problem of preservation of canard connections for time discretized fast-slow systems with canard fold points. In order to ensure such preservation, certain favorable structure preserving properties of the discretization scheme are required. Conventional schemes do not possess such properties. We perform a detailed analysis for an unconventional discretization scheme due to Kahan. The analysis uses the blow-up method to deal with the loss of normal hyperbolicity at the canard point. We show that the structure preserving properties of the Kahan discretization imply a similar result as in continuous time, guaranteeing the occurrence of canard connections between attracting and repelling slow manifolds upon variation of a bifurcation parameter. The proof is based on a non-canonical Melnikov computation along an invariant separating curve, which organizes the dynamics of the map similarly to the ODE problem.
Motivated by the normal form of a fast-slow ordinary differential equation exhibiting a pitchfork singularity we consider the discrete-time dynamical system that is obtained by an application of the explicit Euler method. Tracking trajectories in the vicinity of the singularity we show, how the slow manifold extends beyond the singular point and give an estimate on the contraction rate of a transition mapping. The proof relies on the blow-up method suitably adapted to the discrete setting where a key technical contribution are precise estimates for a cubic map in the central rescaling chart.
We extend slow manifolds near a transcritical singularity in a fast-slow system given by the explicit Euler discretization of the corresponding continuous-time normal form. The analysis uses the blow-up method and direct trajectory-based estimates. We prove that the qualitative behaviour is preserved by a time-discretization with sufficiently small step size. This step size is fully quantified relative to the time scale separation. Our proof also yields the continuous-time results as a special case and provides more detailed calculations in the classical (or scaling) chart.
By applying a singular perturbation approach, canard limit cycles exhibited by a general family of singularly perturbed planar piecewise linear (PWL) differential systems are analyzed. The performed study involves both hyperbolic and non-hyperbolic canard limit cycles appearing after both a supercritical and a subcritical Hopf bifurcation. The obtained results are completely comparable with those obtained for smooth vector fields. In some sense, the manuscript can be understood as an extension towards the PWL framework of the results obtained for smooth systems by Krupa and Szmolyan [18]. In addition, some novel slow-fast behaviors are obtained. In particular, in the supercritical case, and under suitable conditions, it is proved that the limit cycles are organized along a curve exhibiting two folds. Each of these folds corresponds to a saddle-node bifurcation of canard limit cycles, one involving headless canard cycles, whereas the other involving canard cycles with head. This configuration allows the coexistence of three canard limit cycles.
The multiple time scale dynamics induced by radiation pressure and photothermal effects in a high-finesse optomechanical resonator is experimentally studied. At difference with two-dimensional slow-fast systems, the transition from the quasiharmonic to the relaxational regime occurs via chaotic canard explosions, where large-amplitude relaxation spikes are separated by an irregular number of subthreshold oscillations. We also show that this regime coexists with other periodic attractors, on which the trajectories evolve on a substantially faster time scale. The experimental results are reproduced and analyzed by means of a detailed physical model of our system.
Fast-slow dynamical systems have subsystems that evolve on vastly different timescales, and bifurcations in such systems can arise due to changes in any or all subsystems. We classify bifurcations of the critical set (the equilibria of the fast subsystem) and associated fast dynamics, parametrized by the slow variables. Using a distinguished parameter approach we are able to classify bifurcations for one fast and one slow variable. Some of these bifurcations are associated with the critical set losing manifold structure. We also conjecture a list of generic bifurcations of the critical set for one fast and two slow variables. We further consider how the bifurcations of the critical set can be associated with generic bifurcations of attracting relaxation oscillations under an appropriate singular notion of equivalence.