Do you want to publish a course? Click here

Manipulating the Online Marketplace of Ideas

226   0   0.0 ( 0 )
 Added by Filippo Menczer
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Social media, the modern marketplace of ideas, is vulnerable to manipulation. Deceptive inauthentic actors impersonate humans to amplify misinformation and influence public opinions. Little is known about the large-scale consequences of such operations, due to the ethical challenges posed by online experiments that manipulate human behavior. Here we introduce a model of information spreading where agents prefer quality information but have limited attention. We evaluate the impact of manipulation strategies aimed at degrading the overall quality of the information ecosystem. The model reproduces empirical patterns about amplification of low-quality information. We find that infiltrating a critical fraction of the network is more damaging than generating attention-grabbing content or targeting influentials. We discuss countermeasures suggested by these insights to increase the resilience of social media users to manipulation, and legal issues arising from regulations aimed at protecting human speech from suppression by inauthentic actors.



rate research

Read More

We present a method for accurately predicting the long time popularity of online content from early measurements of user access. Using two content sharing portals, Youtube and Digg, we show that by modeling the accrual of views and votes on content offered by these services we can predict the long-term dynamics of individual submissions from initial data. In the case of Digg, measuring access to given stories during the first two hours allows us to forecast their popularity 30 days ahead with remarkable accuracy, while downloads of Youtube videos need to be followed for 10 days to attain the same performance. The differing time scales of the predictions are shown to be due to differences in how content is consumed on the two portals: Digg stories quickly become outdated, while Youtube videos are still found long after they are initially submitted to the portal. We show that predictions are more accurate for submissions for which attention decays quickly, whereas predictions for evergreen content will be prone to larger errors.
Facebook announced a community review program in December 2019 and Twitter launched a community-based platform to address misinformation, called Birdwatch, in January 2021. We provide an overview of the potential affordances of such community based approaches to content moderation based on past research. While our analysis generally supports a community-based approach to content moderation, it also warns against potential pitfalls, particularly when the implementation of the new infrastructures does not promote diversity. We call for more multidisciplinary research utilizing methods from complex systems studies, behavioural sociology, and computational social science to advance the research on crowd-based content moderation.
Risks threatening modern societies form an intricately interconnected network that often underlies crisis situations. Yet, little is known about how risk materializations in distinct domains influence each other. Here we present an approach in which expert assessments of risks likelihoods and influence underlie a quantitative model of the global risk network dynamics. The modeled risks range from environmental to economic and technological and include difficult to quantify risks, such as geo-political or social. Using the maximum likelihood estimation, we find the optimal model parameters and demonstrate that the model including network effects significantly outperforms the others, uncovering full value of the expert collected data. We analyze the model dynamics and study its resilience and stability. Our findings include such risk properties as contagion potential, persistence, roles in cascades of failures and the identity of risks most detrimental to system stability. The model provides quantitative means for measuring the adverse effects of risk interdependence and the materialization of risks in the network.
126 - Tad Hogg , Gabor Szabo 2008
Web sites where users create and rate content as well as form networks with other users display long-tailed distributions in many aspects of behavior. Using behavior on one such community site, Essembly, we propose and evaluate plausible mechanisms to explain these behaviors. Unlike purely descriptive models, these mechanisms rely on user behaviors based on information available locally to each user. For Essembly, we find the long-tails arise from large differences among user activity rates and qualities of the rated content, as well as the extensive variability in the time users devote to the site. We show that the models not only explain overall behavior but also allow estimating the quality of content from their early behaviors.
Artificial intelligence shows promise for solving many practical societal problems in areas such as healthcare and transportation. However, the current mechanisms for AI model diffusion such as Github code repositories, academic project webpages, and commercial AI marketplaces have some limitations; for example, a lack of monetization methods, model traceability, and model auditabilty. In this work, we sketch guidelines for a new AI diffusion method based on a decentralized online marketplace. We consider the technical, economic, and regulatory aspects of such a marketplace including a discussion of solutions for problems in these areas. Finally, we include a comparative analysis of several current AI marketplaces that are already available or in development. We find that most of these marketplaces are centralized commercial marketplaces with relatively few models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا