Do you want to publish a course? Click here

Scalable Panel Fusion Using Distributed Min Cost Flow

84   0   0.0 ( 0 )
 Added by Matthew Malloy
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Modern audience measurement requires combining observations from disparate panel datasets. Connecting and relating such panel datasets is a process termed panel fusion. This paper formalizes the panel fusion problem and presents a novel approach to solve it. We cast the panel fusion as a network flow problem, allowing the application of a rich body of research. In the context of digital audience measurement, where panel sizes can grow into the tens of millions, we propose an efficient algorithm to partition the network into sub-problems. While the algorithm solves a relaxed version of the original problem, we provide conditions under which it guarantees optimality. We demonstrate our approach by fusing two real-world panel datasets in a distributed computing environment.



rate research

Read More

118 - A. Vaniachine 2009
ATLAS event data processing requires access to non-event data (detector conditions, calibrations, etc.) stored in relational databases. The database-resident data are crucial for the event data reconstruction processing steps and often required for user analysis. A main focus of ATLAS database operations is on the worldwide distribution of the Conditions DB data, which are necessary for every ATLAS data processing job. Since Conditions DB access is critical for operations with real data, we have developed the system where a different technology can be used as a redundant backup. Redundant database operations infrastructure fully satisfies the requirements of ATLAS reprocessing, which has been proven on a scale of one billion database queries during two reprocessing campaigns of 0.5 PB of single-beam and cosmics data on the Grid. To collect experience and provide input for a best choice of technologies, several promising options for efficient database access in user analysis were evaluated successfully. We present ATLAS experience with scalable database access technologies and describe our approach for prevention of database access bottlenecks in a Grid computing environment.
There has recently been considerable interest in addressing the problem of unifying distributed statistical analyses into a single coherent inference. This problem naturally arises in a number of situations, including in big-data settings, when working under privacy constraints, and in Bayesian model choice. The majority of existing approaches have relied upon convenient approximations of the distributed analyses. Although typically being computationally efficient, and readily scaling with respect to the number of analyses being unified, approximate approaches can have significant shortcomings -- the quality of the inference can degrade rapidly with the number of analyses being unified, and can be substantially biased even when unifying a small number of analyses that do not concur. In contrast, the recent Fusion approach of Dai et al. (2019) is a rejection sampling scheme which is readily parallelisable and is exact (avoiding any form of approximation other than Monte Carlo error), albeit limited in applicability to unifying a small number of low-dimensional analyses. In this paper we introduce a practical Bayesian Fusion approach. We extend the theory underpinning the Fusion methodology and, by embedding it within a sequential Monte Carlo algorithm, we are able to recover the correct target distribution. By means of extensive guidance on the implementation of the approach, we demonstrate theoretically and empirically that Bayesian Fusion is robust to increasing numbers of analyses, and coherently unifying analyses which do not concur. This is achieved while being computationally competitive with approximate schemes.
In the decremental single-source shortest paths problem, the goal is to maintain distances from a fixed source $s$ to every vertex $v$ in an $m$-edge graph undergoing edge deletions. In this paper, we conclude a long line of research on this problem by showing a near-optimal deterministic data structure that maintains $(1+epsilon)$-approximate distance estimates and runs in $m^{1+o(1)}$ total update time. Our result, in particular, removes the oblivious adversary assumption required by the previous breakthrough result by Henzinger et al. [FOCS14], which leads to our second result: the first almost-linear time algorithm for $(1-epsilon)$-approximate min-cost flow in undirected graphs where capacities and costs can be taken over edges and vertices. Previously, algorithms for max flow with vertex capacities, or min-cost flow with any capacities required super-linear time. Our result essentially completes the picture for approximate flow in undirected graphs. The key technique of the first result is a novel framework that allows us to treat low-diameter graphs like expanders. This allows us to harness expander properties while bypassing shortcomings of expander decomposition, which almost all previous expander-based algorithms needed to deal with. For the second result, we break the notorious flow-decomposition barrier from the multiplicative-weight-update framework using randomization.
Fine tuning distributed systems is considered to be a craftsmanship, relying on intuition and experience. This becomes even more challenging when the systems need to react in near real time, as streaming engines have to do to maintain pre-agreed service quality metrics. In this article, we present an automated approach that builds on a combination of supervised and reinforcement learning methods to recommend the most appropriate lever configurations based on previous load. With this, streaming engines can be automatically tuned without requiring a human to determine the right way and proper time to deploy them. This opens the door to new configurations that are not being applied today since the complexity of managing these systems has surpassed the abilities of human experts. We show how reinforcement learning systems can find substantially better configurations in less time than their human counterparts and adapt to changing workloads.
364 - Zhenlong Li , Xiao Huang , Tao Hu 2021
In response to the soaring needs of human mobility data, especially during disaster events such as the COVID-19 pandemic, and the associated big data challenges, we develop a scalable online platform for extracting, analyzing, and sharing multi-source multi-scale human mobility flows. Within the platform, an origin-destination-time (ODT) data model is proposed to work with scalable query engines to handle heterogenous mobility data in large volumes with extensive spatial coverage, which allows for efficient extraction, query, and aggregation of billion-level origin-destination (OD) flows in parallel at the server-side. An interactive spatial web portal, ODT Flow Explorer, is developed to allow users to explore multi-source mobility datasets with user-defined spatiotemporal scales. To promote reproducibility and replicability, we further develop ODT Flow REST APIs that provide researchers with the flexibility to access the data programmatically via workflows, codes, and programs. Demonstrations are provided to illustrate the potential of the APIs integrating with scientific workflows and with the Jupyter Notebook environment. We believe the platform coupled with the derived multi-scale mobility data can assist human mobility monitoring and analysis during disaster events such as the ongoing COVID-19 pandemic and benefit both scientific communities and the general public in understanding human mobility dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا